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S1 Dataset descriptions
For this study we utilize five temporal network datasets taken across a variety of scientific domains:

Copenhagen A temporal physical proximity network tracking the smartphones of individuals participating in the
Copenhagen Networks study [1, 2]. Edges were recorded as timestamped bluetooth interaction between
participants. Interactions with devices outside the experiment were ignored. To process these data, edges
with at least 200 interactions were retained and temporal interactions were binned from 5 minutes and then
aggregated into 1h bins. Edge directionality was not used. After processing, the network consisted of
𝑛 = 544 nodes, 𝑚 = 2389 edges, and 𝑇 = 672 time periods. The original data are available at https:
//doi.org/10.6084/m9.figshare.7267433.
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Hospital A temporal physical proximity network tracking patient-to-patient, patient-to-worker, and worker-to-worker
contacts within a hospital ward in Lyon, France [3]. Health care workers and patients wore wearable sensors
(RFID) that recorded close proximity and undirected edges were added to the temporal network when an close
interaction was recorded (i.e., two wearables exchanged a packet) during a 20s window. The study covered the
time period Monday, Dec. 6, 2010 1pm to Friday, Dec. 10 2pm. To process these data, edges with at least
20 interactions were retained and temporal interactions were aggregated into 1h bins. After processing, the
network consisted of 𝑛 = 68 nodes, 𝑚 = 329 edges, and 𝑇 = 96 time periods. The original data are available at
http://www.sociopatterns.org/datasets/hospital-ward-dynamic-contact-network/.

Ant Colony A temporal physical proximity network tracking interactions between ants (Temnothorax rugatulus) [4].
Edges were recorded between ants when one ant’s antenna made contact with another ant’s body. The colony
was housed in a transparent nest and filmed; individual ants were distinguished by manual marks made with
colored paint. Here we focused on Colony 1-1, the first filming period for colony 1. Filming sessions of all
colonies covered periods of approximately 1800s. Data were provided as PDF table files which were extracted
to plain text csv files using the Camelot Python package. To process these data, edges with at least 3 interactions
were retained and temporal interactions were aggregated into 10s bins. Edge directionality was not used. After
processing, the network consisted of 𝑛 = 85 nodes, 𝑚 = 269 edges, and 𝑇 = 143 time periods. The original data
are available at https://doi.org/10.1371/journal.pone.0020298.s008.

Manufacturing Email A temporal social network tracking internal emails sent between employees of a mid-size
manufacturing firm [5]. Edges were recorded when emails were sent between email addresses; emails with
multiple recipients (including CC and BCC recipients) were recorded as multiple simultaneous edges. The data
covered the period Jan. 1, 2010 to Sep. 30, 2010. To process these data, edges with at least 10 interactions were
retained and temporal interactions were aggregated into 1 day bins. Edge directionality was not used. After
processing, the network consisted of 𝑛 = 140 nodes, 𝑚 = 1137 edges, and 𝑇 = 273 time periods. The original
data are available at https://doi.org/10.7910/DVN/6Z3CGX.

College Message An temporal social network originating from an online community of college students attending
University of California, Irvine [6]. Timestamped links were recorded when messages were sent between students
during the period April to October, 2004. To process these data, edges with at least 10 interactions were retained
and temporal interactions were aggregated into 1 day bins. Edge directionality was not used. After processing,
the network consisted of 𝑛 = 609 nodes, 𝑚 = 1323 edges, and 𝑇 = 194 time periods. The original data are
available at https://toreopsahl.com/datasets/#online_social_network.

S1.1 Time series of network sparsity
Figure S1 shows the sparsity patterns of the temporal networks over time. The five representative networks all display
different patterns or time scales. For instance, the interaction networks (Copenhagen and Hospital) display a daily
periodicity, with Copenhagen covering four weeks compared to Hospital’s four days. In contrast, Ant Colony covers a
short time period of 30 minutes while Manufacturing Email and College Message both cover several months of time.
College Message also exhibits a non-stationary signature not present in the periodicity of Manufacturing Email with a
burst of activity early on followed by a long period of low activity. All networks but Copenhagen exhibit a few time
periods of zero activity (highlighted in Fig. S1 with red vertical bands).

S2 Finding sparse solutions
The system BE = N is underdetermined, but sparse solutions Ê for the unknown E can be found by solving the
following optimization problem (Eq. (S1)):

min
E

1
2𝑛

‖N − BE‖2
𝐹 + 𝛼‖E‖21 (S1a)

subject to 𝐸𝑖 𝑗 ≥ 0, 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑇, (S1b)
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Figure S1: Sparsity over time across network datasets. (Top row) Mean edge activity 〈E𝑡 〉 over time, where E𝑡 is the 𝑡-th column
of the edge activity matrix E. (Bottom row) Sparsity 𝑠𝑡 , the number of active edges at time period 𝑡. Vertical red lines highlight 𝑡
where 𝑠𝑡 = 0; cf. Fig. 2, second column.

where ‖·‖𝐹 is the Frobenius norm, ‖E‖21 =
∑

𝑖

√︃∑
𝑗 𝐸

2
𝑖 𝑗

is a mixed 𝐿1/𝐿2 regularization term and 𝛼 serves as a
hyperparameter balancing sparsity of Ê and solution accuracy (via the least-squares loss ‖N − BE‖𝐹 ). The constraint
E > 0 enforces that edge activity data are nonnegative. (The problem Eq. (S1) can be equivalently expressed with the
regularization term as a constraint.)

Equation (S1) can be interpreted as a (multi-target) Lasso regression without an intercept term and with the added
constraint enforcing nonnegative regression coefficients. The 𝐿1/𝐿2 regularization term is used to find sparse solutions
for multiple regression problems (columns of N and Ê) jointly by treating each edge as a group over time [7, 8].

Solutions were found in Python version 3.8.8 using the Lasso implementation of Sci-Kit Learn version 0.24.1 [9].
Coordinate descent was used with a precomputed Gram matrix and random coefficient selection to speed convergence.
Bayes Information Criterion was used to select 𝛼 (Sec. S2.1). All other parameters were left to their v0.24.1 defaults.

S2.1 Hyperparameter selection
Solving Eq. (S1) requires first determining a value of 𝛼, the regularization hyperparameter. Different values of 𝛼 can
lead to very different solutions, so care must be taken to find the most appropriate value of 𝛼 possible. Generally, in a
machine learning or statistical learning context, it is best to 𝛼 using additional held-out data, to help ensure your fitted
model generalizes to new data. However, in our problem, we are performing inference, not learning, and while it is
straightforward to use cross-validation to select 𝛼 and fit the model with different data subsets, we can safely use the
same data for both selecting 𝛼 and estimating Ê.

Information criteria are an effective way to estimate hyperparameters [10, 11]. These balance the complexity of
the model with its accuracy. For regularized regression, model complexity maps to the number of nonzero regression
coefficients, which is controlled by the value of 𝛼. This allows us to select the value of 𝛼 by minimizing the BIC: Here
we use Bayes Information Criterion (BIC):

BIC =

𝑛𝑇

〈(
N − BÊ

)2
〉

𝜎2 + log(𝑛𝑇)𝑑𝑓 (S2)

where
〈
N − BÊ)2〉 is the mean squared error, 𝜎2 = Var(N) is the variance of elements of N, and 𝑑𝑓 is the number of

nonzero coefficients, an unbiased estimator of the Lasso degrees of freedom [12]. Equation (S2) is a function of 𝛼 for
a given temporal network dataset because the data are fixed and Ê depends on 𝛼.

Figure S2 plots the BIC as a function of 𝛼 for each network under study. Table S1 displays the final selected 𝛼

for each network. Solving Eq. (S1) many times can be costly; fortunately, the path of all solutions can be computed
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Figure S2: Hyperparameter selection using Bayes Information Criterion (BIC). For each network we plot the BIC curve as a
function of the 𝛼 regularization parameter. The smallest value and our final choice for the regularization parameter is highlighted
with a vertical line. BIC was computed along each piecewise-linear step of the LARS solution path and the 𝛼 minimizing BIC
was selected. Note that the non-negativity constraint in Eq. (S1) means that the solution path does not converge to least-squares as
𝛼 → 0. Here we report only those 𝛼 > 0 that were reached by the step-wise Lars path as only those coefficients are in congruence
with the coordinate descent Lasso.

efficiently using the LARS method [13]. Sci-kit Learn’s current LARS implementation does not support multi-target
regression problems. To counter this, we reshaped the problem into a single regression by stacking the 𝑇 columns of
N into a single vector, replicating B 𝑇 times to match, and computing the LARS solution path using an 𝐿1 penalty.
Then BIC was computed along the LARS solution path to select 𝛼, which was then substituted back into Eq. (S1) and
optimized to yield our final solution Ê.

Table S1: Regularization hyperparameters selected with BIC.

𝛼 (BIC)

Copenhagen 0.019958537790598734
Hospital 0.5710784313725501
Ant Colony 0.004292537772684784
Manufacturing Email 0.007326007326005932
College Message 0.0018803877107223018

S3 Multi-scale backbones
Supplementing main text Fig. 4, Fig. S3 shows the least-norm solution and sparse solution ROC curves for all networks
in the corpus. The main text figure only showed the sparse solution ROC curve for one network (Copenhagen) and
then used plots of the AUC to summarize performance across networks and both solutions.

S4 Least-norm error bound
Here we derive the bound on estimation error for the classic, least-norm approach to solving the underdetermined
system BE = N discussed in the main text.

While B−1 in general does not exist, the pseudoinverse B+ can be efficiently computed with SVD and used to find
the minimum or least-norm solution [14]:

Ê = B+N = B+BE ≠ E (S3)

where the last line follows from B+B ≠ I since B+ is a right-inverse, not a left-inverse, of B. Since
BÊ − N

2
𝐹
= 0
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A Least-norm

B Sparse

Figure S3: Receiver operating characteristic (ROC) curves comparing multiscale backbones for full corpus. This supporting plot
supplements main text Fig. 4B which shows the ROC curve only for the Copenhagen network. (A) Backbones found with inferred
edge weights recovered from the least-norm solution. (B) Backbones found with inferred edge weights recovered from the sparse
solution. The diagonal dashed line corresponds to a classifier that is randomly guessing whether or not an edge is within the
backbone; better-performing classifiers have ROC curves that push further into the upper-left corner of the ROC plot.

(assuming Ê exists), we cannot characterize the solution using the residual. Instead, at least theoretically, we consider
the estimation error, the difference between E and Ê:

Ê − E = B+BE − E =
(
B+B − I

)
E (S4)Ê − E


𝐹
=
(B+B − I

)
E

𝐹

(S5)
≤
(B+B − I

)
𝐹
‖E‖𝐹 (S6)

≤
√
𝑚 − 𝑛 ‖E‖𝐹 (S7)

where ‖·‖𝐹 is the Frobenius norm, Eq. (S6) follows from the Cauchy-Schwarz inequality, and we now derive
‖(B+B − I)‖𝐹 ≤

√
𝑚 − 𝑛.

Recall the (unoriented) incidence matrix B is an 𝑛 × 𝑚 matrix with right-inverse B+ such that B+B is 𝑚 × 𝑚.
(We assume B is full rank; otherwise, either the problem is not underdetermined and can be solved or the network
is disconnected and we can find the solution individually for each connected component.) The Frobenius norm of a
matrix A is ‖A‖2

𝐹 = Tr (AA∗). ThereforeB+B − I
2
𝐹
= Tr

[ (
B+B − I

) (
B+B − I

)∗]
= Tr

[ (
B+B − I

) ( (
B+B

)∗ − I
) ]

(since I∗ = I)
= Tr

[ (
B+B − I

) (
B+B − I

) ]
(B+B is Hermitian so is B+B − I)

= Tr
[
B+B − B+B − B+B + I2] (BB+ = I since B+ is a right-inverse of B)

= Tr
[
I − B+B

]
= Tr I − Tr

(
B+B

)
≤ 𝑚 − 𝑛. (B+B is idempotent so Tr (B+B) = rank (B+B) = rank(B) ≤ 𝑛, since rank(B) ≤ 𝑛)

Remark. In general, we can expect rank(B) = 𝑛 for most networks; however, this is not guaranteed. Indeed, a connected
tree will have rank(B) = 𝑛−1. Likewise, the rank of the incidence matrix is also less than 𝑛 for disconnected networks.
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S5 Network structure and error bounds for sparse solutions
Here we exploit theory developed for high-dimensional (𝑚 � 𝑛) statistical learning and optimization problems
to understand when the estimation error

E∗
𝑡 − Ê𝑡

2
2 can be bounded. Problems in this area include basis pursuit,

compressed sensing, and penalized regression [15, 16, 17]. We connect this theory with results from spectral graph
theory to determine what network structure is necessary for the error of the recovery problem to be bounded.

To understand the performance of the optimization problem we need to investigate its loss function. If the loss
function is strongly convex, then a single minima exists and, for our optimization problem, theoretical bounds can
be put on the estimation error. If, however, the loss function is not strongly convex but only convex, then there will
exist directions for which the loss is flat, and the optimization solution can become arbitrarily far away, preventing
convergence.

For our optimization (Eq. (S1)), consider, at timestep 𝑡, i.e., column 𝑡 of E and N, the least-squares loss 𝑓 (E𝑡 ) =
1

2𝑛 ‖N𝑡 − BE𝑡 ‖2
2 is always convex. It is strongly convex when the 𝑚 × 𝑚 Hessian matrix for this loss, ∇2 𝑓 = B𝑇 B/𝑛,

has eigenvalues bounded away from zero. Unfortunately, a Gram matrix of the form B𝑇 B where B is 𝑛 × 𝑚 will have
rank at most min{𝑛, 𝑚} and so will be rank-deficient in the high-dimensional setting (𝑛 < 𝑚) [18].

This forces us to seek weaker requirements than strong convexity for the loss function. Instead, we consider
restricted strong convexity, where strong convexity is required only for a subset C ⊂ R𝑚 of estimation error vectors
𝜈 ≡ E∗

𝑡 − E𝑡 ∈ C. A loss function 𝑓 (E𝑡 ) satisfies restricted strong convexity at E∗
𝑡 if

𝜈𝑇 ∇2 𝑓 (E𝑡 )𝜈
‖𝜈‖2

2
≥ 𝛾 for all nonzero 𝜈 ∈ C, (S8)

and for all E𝑡 ∈ R𝑚 in the neighborhood of E∗
𝑡 .

Specializing this to a linear model means that we seek to lower bound the restricted eigenvalues of B𝑇 B:

Definition S5.1 (Restricted eigenvalue (RE) condition for linear regression).

1
𝑛
𝜈𝑇 B𝑇 B𝜈
‖𝜈‖2

2
≥ 𝛾 for all nonzero 𝜈 ∈ C. (S9)

Consider the regularized form of the Lasso1. The restricted set C for the regularized Lasso is defined based on
the sparsity of the parameter E∗

𝑡 . Suppose the “active set” of edges at time 𝑡 is 𝑆𝑡 (E𝑡 ), with |𝑆𝑡 | = 𝑠𝑡 . For the Lasso
error 𝜈𝑡 = E∗

𝑡 − Ê𝑡 , let 𝜈𝑡 ,𝑆 be the subvector of 𝜈𝑡 with elements corresponding to index set 𝑆𝑡 , the nonzero elements
of E𝑡 . Define the complement likewise: 𝜈𝑡 ,𝑆𝐶 . Then, the set of error vectors for regularized Lasso, depending on the
regularization parameter [18], will satisfy a cone constraint:

C(𝑆) ≡
{
𝜈 ∈ R𝑚 | ‖𝜈𝑆𝐶 ‖1 ≤ 3 ‖𝜈𝑆 ‖1

}
. (S10)

Moving on to the network structure, B is the 𝑛 ×𝑚 unoriented incidence matrix of the graph 𝐺 and this means our
regression problem is related to the line graph of 𝐺:

Definition S5.2 (Line graph). The line graph 𝐿 (𝐺) of a graph 𝐺 is the graph where each node in 𝐿 (𝐺) corresponds
to an edge in 𝐺, and an edge exists between two nodes in 𝐿 (𝐺) when the corresponding edges in 𝐺 share an endpoint.
The adjacency matrix A(𝐿 (𝐺)) is of size 𝑚 × 𝑚 for 𝐺 with 𝑚 edges.

Specifically, the regression problem is related to the line graph by

B𝑇 B = 2I + A(𝐿 (𝐺)). (S11)

Each eigenvalue of B𝑇 B is 2 + 𝜆 𝑗 , where 𝜆 𝑗 is an eigenvalue of A(𝐿 (𝐺)). Therefore, we seek to understand the

1For simplicity, here we consider the per-timestep Lasso, which is closely aligned with the group Lasso formulation we used. When analyzing each
time period 𝑡 separately (considering column E𝑡 of E), the optimization problem Eq. (S1) reduces to regularized Lasso (barring the non-negativity
constraints).
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eigenvalues of A(𝐿 (𝐺)) for a given graph 𝐺, specifically when the minimum eigenvalue 𝜆min ≡ min 𝑗 𝜆 𝑗 > −2. Taking
𝐺 = 𝐺𝑡 , the graph of active edges at time 𝑡, we can then use 𝜆min to determine if RE holds at time 𝑡.

To proceed, first we state two theorems due to Doob [19]:

Theorem S5.1. The smallest eigenvalue 𝜆min of the adjacency matrix of the line graph of 𝐺 is

𝜆min (A(𝐿 (𝐺))) = −2 (S12)

unless every connected component of 𝐺 is a tree or has one cycle only, of odd length.

Theorem S5.2. If 𝐺 is a graph of diameter 𝑑, then

− 2 ≤ 𝜆min (A(𝐿 (𝐺))) ≤ −2 cos
( 𝜋

𝑑 + 1

)
(S13)

Further, these bounds are the best possible.

If there exists an eigenvector x of B𝑇 B with eigenvalue zero, and x ∈ C, then the estimation error will not be
bounded. In fact, we need only to consider the submatrix B𝑡 indexed by the active edge set 𝑆𝑡 , i.e., the incidence matrix
of 𝐺𝑡 :

Theorem S5.3. Every eigenvector of B𝑇
𝑡 B𝑡 has a corresponding vector in C(𝑆𝑡 ).

Proof. Let x ∈ R𝑠𝑡 be an eigenvector of B𝑇
𝑡 B𝑡 . Using 𝑆𝑡 ⊂ [1..𝑚], |𝑆𝑡 | = 𝑠𝑡 , as an index set, define x′ ∈ R𝑚 to be the

vector with elements

𝑥 ′𝑗 =

{
𝑥𝜎 ( 𝑗) 𝑗 ∈ 𝑆𝑡 ,

0 otherwise,
(S14)

where 𝜎 : 𝑆𝑡 → [1..𝑠𝑡 ] maps vector indices of R𝑚 to those of R𝑠𝑡 , as subsetted by 𝑆𝑡 . In other words, x′ is the vector
with active set x′

𝑆𝑡
= x and the complement x′

𝑆𝐶
𝑡

= 0. By the construction of 𝑆𝑡 , ‖x′
𝑆𝑡
‖1 = ‖x‖1 > 0, and sox′

𝑆𝐶
𝑡


1
< 𝛿

x′
𝑆𝑡


1

for any 𝛿 > 0. Therefore, the cone constraint of C(𝑆𝑡 ) is satisfied (with 𝛿 = 3) and x′ ∈ C(𝑆𝑡 ). �

In summary, Theorem S5.3 tells us that we do not need to consider the eigenvector corresponding to 𝜆min; it suffices
only to determine whether 𝜆min (A(𝐿 (𝐺𝑡 ))) > −2 per Thm. S5.1 and if so then the smallest eigenvalue of B𝑇 B > 0,
RE holds at time 𝑡, and the estimation error ‖E∗

𝑡 − Ê𝑡 ‖2 will be bounded.
Remark. While a lower bound on 𝜆min tighter than 𝜆min > −2 would be useful when Thm. S5.1 holds, Thm. S5.2 can
be used to specify an upper bound on 𝜆min. Of course, given an observed 𝐺𝑡 , one can compute the smallest eigenvalue
of B𝑇 B directly to determine 𝛾 and apply an appropriate bound. Bounds on estimation (and prediction) error in
high-dimension settings are the subject of considerable research in many contexts [20, 17, 21, 22, 8, 23]. See [18, 24]
for recent summaries.
Remark. If 𝐺𝑡 is disconnected, 𝐿 (𝐺𝑡 ) will also be disconnected and A(𝐿 (𝐺𝑡 )) will be reducible. Because 𝐿 (𝐺𝑡 ) is
undirected, A(𝐿 (𝐺𝑡 )) can further be put into block diagonal form when 𝐺𝑡 is disconnected. Therefore, the spectrum
of A(𝐿 (𝐺𝑡 )) will be the union of the spectra of each connected component of 𝐿 (𝐺𝑡 ) and Thm. S5.2 can be applied to
upper-bound the smallest eigenvalue using

𝑑max = max {𝑑 (𝐿 (𝑔𝑡 )) | 𝑔𝑡 ∈ components(𝐺𝑡 )} , (S15)

where 𝑑 (𝐿 (𝑔𝑡 )) is the diameter of the line graph of connected component 𝑔𝑡 ∈ 𝐺𝑡 and components(𝐺) is the set of all
connected component subgraphs of 𝐺.
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S5.1 Comparison to network corpus
Lastly, we contextualize our results above using the five networks in our corpus. For each network at each time 𝑡, we
computed 𝜆min (B𝑇

𝑡 B𝑡 ) in Fig. S4 and 𝑑max (Eq. (S15)) in Fig. S5. We see in Fig. S4 that the 𝜆 gives us a good indication
of the difficulty of recovering E from N and B. For Copenhagen, Hospital, and Manufacturing Email, we observe
many periods where 𝜆min = 0, indicating that the estimation error

E∗
𝑡 − Ê𝑡

2
2 cannot be bounded. In comparison, Ant

Colony and College Message should be far easier recovery problems, as 𝜆min > 0 for most 𝑡. Indeed, this comports
well with the overall errors we report in the main text (Fig. 5).
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Figure S4: Minimum eigenvalue 𝜆min of B𝑇
𝑡 B𝑡 over time. Estimation error can only be bounded when 𝜆min > 0. Copenhagen,

Hospital, and Manufacturing Email networks are the most challenging recovery problems in our corpus, as 𝜆min is frequently zero.
Ant Colony and College Message, in contrast, are far easier recovery problems, as both frequently have 𝜆min > 0. In Sec. S5 we
derive the graph-theoretic properties governing whether 𝜆min > 0.
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Figure S5: The maximum diameter 𝑑 over the connected component(s) of 𝐺𝑡 over time (see remark, Thm. S5.3).

Lastly, we support the observation in the main text that node activation fractions 𝑛𝑡/𝑛 correlate well with estimation
error, nearly as well as edge activation fractions 𝑠𝑡/𝑚, in Table S2 (in the main text we compared activation fractions
with relative estimation error). Here we again see that estimation error correlates nearly as well with 𝑛𝑡/𝑛 as it does
with 𝑠𝑡/𝑚. While 𝑠𝑡/𝑚 provides better correlation in all networks, 𝑠𝑡 will not be known in practice, while 𝑛𝑡 will be,
and so the closeness in correlation means 𝑛𝑡 can be used as a suitable proxy for 𝑠𝑡 when trying to judge the magnitude
of recovery errors.

S5.2 Comparison to network features
Expanding up main text Sec. 4 and Fig. 5, we further report relationships between estimation error and network
properties in Fig. S6. Many simple measures for an edge centrality, such as edge betweenness or various combinations
of the degrees of the nodes incident to the edge, actually show weak correlation with recovery error. For the latter
measures, min(𝑘𝑖 , 𝑘 𝑗 ) tends to be most correlated with error for edge (𝑖, 𝑗)—in all networks, this measure was more
correlated with error than max(𝑘𝑖 , 𝑘 𝑗 ), (𝑘𝑖 + 𝑘 𝑗 )/2, and

��𝑘𝑖 − 𝑘 𝑗

��. This measure was also more correlated with error
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Table S2: Correlations between ‖E𝑡 − Ê𝑡 ‖2 and the three measures. While the third measure, 𝑛𝑡/𝑛, is the least correlated, it still
gives correlation quite close in value to the other measures. This is important because any measure involving 𝑠𝑡 cannot be computed
in practice. We report both Pearson correlation 𝑟 and Spearman correlation 𝜌.

Corr. 𝑠𝑡/𝑚
√︃
𝑠𝑡

log𝑚
𝑛

𝑛𝑡/𝑛

Copenhagen 𝑟 0.94350 0.93104 0.84295
𝜌 0.86529 0.86529 0.79140

Hospital 𝑟 0.85576 0.84924 0.81097
𝜌 0.90346 0.90346 0.86602

Ant Colony 𝑟 0.72979 0.73464 0.70718
𝜌 0.74810 0.74810 0.73497

Manufacturing Email 𝑟 0.80367 0.81359 0.79153
𝜌 0.69007 0.69007 0.62962

College Message 𝑟 0.89974 0.84597 0.84190
𝜌 0.92486 0.92486 0.90039

than edge betweenness. The sparsity of the edge, the proportion of times it was active, was also correlated with error,
with more active edges tending to have higher recovery errors for most networks, with College Message being a notable
exception.
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