
Mach. Learn.: Sci. Technol. 6 (2025) 035037 https://doi.org/10.1088/2632-2153/adf9bd

OPEN ACCESS

RECEIVED

3 June 2025

REVISED

22 July 2025

ACCEPTED FOR PUBLICATION

8 August 2025

PUBLISHED

21 August 2025

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Multi-exit Kolmogorov–Arnold networks: enhancing accuracy
and parsimony
James Bagrow1,2,∗ and Josh Bongard3,2

1 Mathematics & Statistics, University of Vermont, Burlington, VT, United States of America
2 Vermont Complex Systems Center, University of Vermont, Burlington, VT, United States of America
3 Computer Science, University of Vermont, Burlington, VT, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: james.bagrow@uvm.edu and bagrow.com

Keywords:multi-exit and early-exit neural networks, scientific machine learning, interpretability and explainability, deep supervision,
data-driven models, dynamical systems

Abstract
Kolmogorov–Arnold networks (KANs) uniquely combine high accuracy with interpretability,
making them valuable for scientific modeling. However, it is unclear a priori how deep a network
needs to be for any given task, and deeper KANs can be difficult to optimize and interpret. Here we
introduce multi-exit KANs, where each layer includes its own prediction branch, enabling the
network to make accurate predictions at multiple depths simultaneously. This architecture
provides deep supervision that improves training while discovering the right level of model
complexity for each task. Multi-exit KANs consistently outperform standard, single-exit versions
on synthetic functions, dynamical systems, and real-world datasets. Remarkably, the best
predictions often come from earlier, simpler exits, revealing that these networks naturally identify
smaller, more parsimonious and interpretable models without sacrificing accuracy. To automate
this discovery, we develop a differentiable ‘learning-to-exit’ algorithm that balances contributions
from exits during training. Our approach offers scientists a practical way to achieve both high
performance and interpretability, addressing a fundamental challenge in machine learning for
scientific discovery.

1. Introduction

Machine learning has become indispensable for scientific discovery, enabling researchers to uncover complex
patterns in data that traditional analytical methods cannot readily capture [1–4]. Neural networks and
related techniques excel at nonlinear regression and data-driven modeling of dynamical
systems—fundamental challenges spanning physics, biology, chemistry, and engineering [1, 4, 5]. From
climate modeling [6, 7] to protein folding prediction [8], these data-driven approaches can learn
sophisticated functional relationships directly from observations, opening new pathways to understanding
natural phenomena where first-principles models are unavailable or computationally intractable [2, 4, 9, 10].

Despite these advances, scientific applications face a fundamental challenge that is less pressing in many
other machine learning domains: the need to achieve simultaneously both high predictive accuracy and
model interpretability [2, 11]. While many commercial applications prioritize accuracy above all else,
scientific modeling demands that researchers understand not just what the model predicts, but how and why
it makes those predictions [2, 4]. Interpretability is essential for determining whether models capture
genuine physical relationships rather than spurious correlations, for gaining scientific insight into the
underlying phenomena, and for building the trust necessary to guide experimental design or inform policy
decisions [11–13]. Unfortunately, accuracy and interpretability are in tension: the most accurate machine
learning models—typically deep neural networks with millions or billions of parameters—are often the least
interpretable, functioning as ‘black boxes’ that provide little insight into the mechanisms driving their
predictions [4, 14]. This accuracy–interpretability trade-off remains a critical bottleneck for the adoption of

© 2025 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/adf9bd
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/adf9bd&domain=pdf&date_stamp=2025-8-21
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4614-0792
mailto:james.bagrow@uvm.edu
mailto:bagrow.com

Mach. Learn.: Sci. Technol. 6 (2025) 035037 J Bagrow and J Bongard

machine learning in scientific discovery, where understanding the underlying relationships is often as
important as making accurate predictions [2, 4].

Kolmogorov–Arnold networks (KANs) have recently emerged as a promising solution to this
accuracy-interpretability dilemma, representing one of the rare neural architectures that can achieve both
high predictive performance and meaningful interpretability [15–17]. Motivated by the Kolmogorov–Arnold
Representation Theorem, which shows that multivariate functions can be represented as compositions of
univariate functions, KANs provide a divide-and-conquer approach to high-dimensional problems by
breaking them down into manageable univariate components that can be learned directly from data [15].
This enables KANs to discover and represent complex functional relationships while maintaining the ability
to visualize and interpret each learned univariate function individually. Results have demonstrated that
KANs can achieve competitive accuracy with traditional deep networks on regression tasks and dynamical
systems modeling while providing insights into the learned functional forms [15, 16, 18, 19]. This
combination of accuracy and interpretability makes KANs well-suited for scientific applications where
understanding the underlying mathematical relationships is as crucial as predictive performance.

Despite these promising qualities, KANs face challenges that can limit their effectiveness in scientific
applications. Training KANs presents optimization difficulties, as the learnable univariate functions must be
carefully parameterized and refined, with deeper networks often proving particularly challenging to
optimize [15]. The architecture search problem—determining the appropriate number of layers and
widths—also remains significant, as practitioners must balance expressiveness against parsimony while
avoiding overfitting [20]. Seeking smaller, more parsimonious models without sacrificing accuracy is crucial
because overly deep KANs lose interpretability as compositions of many univariate functions become
difficult to understand, while smaller KANs better retain the interpretability that makes them valuable for
scientific modeling [15]. These challenges suggest that architectural innovations are needed to better realize
KANs’ potential for scientific discovery.

In this paper, we introducemulti-exit architectures [21, 22] into KANs as a novel approach to address
these challenges while preserving KANs’ interpretability advantages. Multi-exit networks, originally
developed for deep networks to enable adaptive inference and computational efficiency, augment networks
with additional prediction branches at intermediate layers, allowing models to make predictions at multiple
depths [22–24]. When applied to KANs, this approach offers a novel way to tackle the architecture search
challenge by enabling a single network to effectively explore multiple levels of complexity
simultaneously [24]. Multi-exit KANs can help identify appropriate levels of model complexity for a given
task: if early exits perform well, the network has found a parsimonious and more interpretable model that
maintains accuracy, while deeper exits remain available when additional expressiveness is needed (figure 1).
Furthermore, the multi-exit approach enables deep supervision [25] during training, where gradients flow
directly to earlier layers through the exit branches, potentially improving the optimization of deeper KANs.

Experiments demonstrate the effectiveness of multi-exit KANs across diverse scientific modeling tasks,
showing consistent improvements in both accuracy and parsimony compared to traditional single-exit
KANs. Our key contributions include: (1) the first application of multi-exit architectures to KANs, with a
joint training framework that enables deep supervision; (2) empirical validation across regression problems,
dynamical systems modeling, continual learning scenarios, and real-world datasets; (3) evidence that
multi-exit KANs often achieve better performance at earlier exits, indicating more parsimonious models
without sacrificing accuracy; and (4) a ‘learning-to-exit’ algorithm that addresses the choice of extra
hyperparameters when using multi-exits. Additionally, we provide insights into why multi-exit architectures
are particularly well-suited for KANs and discuss the mechanisms underlying their improved performance.
These results suggest that multi-exit architectures represent a valuable enhancement to KANs for scientific
applications, offering a principled approach to balancing accuracy and interpretability.

The rest of this paper is organized as follows. Section 2 provides background on KANs and multi-exit and
early-exit neural architectures. Section 3 describes our approach for incorporating multiple exits into the
KAN architecture. Section 4 presents results comparing single-exit and multi-exit KANs across multiple
domains. Section 6 introduces the learning-to-exit method. Finally, we conclude in section 7 by discussing
the implications of our findings, including why multi-exit architectures improve KAN performance, and
directions for future work.

2. Background

We consider the problems of learning unknown functions from data: nonlinear regression,

y= F(x) (1)

2

Mach. Learn.: Sci. Technol. 6 (2025) 035037 J Bagrow and J Bongard

Figure 1. Enhancing accuracy and interpretability of Kolmogorov–Arnold networks (KANs) with multiple exits, here illustrated
on the toy problem y= sin(x1)+ cos(x2).

for y ∈ Rn×m and x ∈ Rn×d, and data-driven modeling of continuous or discrete dynamical systems of the
form

dx

dt
= F(x) (2)

or

xn+1 = F(xn) , (3)

respectively, and subject to problem-relevant initial and/or boundary conditions. KANs have proven effective
for both problems [15, 18, 19].

2.1. KANs
A KAN network is a multilayer feedforward neural network but unlike a traditional multilayer perceptron
(MLP), the nonlinearities come from learnable, univariate activation functions (figure 1) associated with the
connections between layers, and fixed summations (or multiplications) propagate signals between layers. In
contrast, MLPs use fixed nonlinear activation functions on the units and learnable weights for summations
associated with the connections between layers.

3

Mach. Learn.: Sci. Technol. 6 (2025) 035037 J Bagrow and J Bongard

MLPs are motivated by the universal approximation theorem [26] while KANs are motivated by the
KART, or Kolmogorov–Arnold Representation Theorem [27–29]: every multivariate continuous function on a
finite domain can be expressed as a finite superposition of univariate continuous functions. More
specifically, for F : [0,1]d → R,

F(x) = F(x1,x2, . . . ,xd) =
2d+1∑
q=1

Φq

 d∑
p=1

ϕq,p

(
xp
) , (4)

where ϕq,p : [0,1]→ R and Φq : R→ R. The KART shows that it is possible to represent any continuous
function of multiple variables as a composition of one-dimensional functions. The innovation of KANs is to
operationalize this by learning the univariate ‘activation’ functions and stacking them in deep layers. As
shown by Liu et al [15], the stacking, which extends beyond the KART, often allows for smooth and
interpretable activation functions which are not expected in the two-layer KART form given by equation (4).

In a KAN, the activation functions are typically parameterized using B-splines, local polynomial
approximations of the one-dimensional functions. Although many other function-fitting techniques have
been considered, including radial basis functions [30], Fourier series [31], sinusoidal functions [32],
Chebyshev polynomials [33], and wavelet-based representations [34], all of which have many advantages,
particularly in terms of computational efficiency, for our purposes here we focus on the original B-spline
approach, though we also demonstrate the generalizability of our multi-exit architecture using Fourier series
in appendix B.

Specifically, each activation function ϕ(x) is parameterized as a combination of a base function and a
B-spline component:

ϕ(x) = b(x)+
∑
j

cjBj (x) (5)

where b(x) is the base function, cj are the learnable coefficients, and Bj(x) are the B-spline basis functions.
The base function serves as a residual connection similar to those in ResNets [25], facilitating gradient flow
during training while allowing the B-spline component to learn nonlinear deviations. Common choices for
the base function include the identity function b(x) = x, the SiLU function b(x) = x/(1+ e−x), or the zero
function b(x) = 0 when residual connections are omitted. Additionally, this formulation helps maintain the
effectiveness of low-order B-splines even in deep networks by preventing their nested composition from
creating numerically unstable high-order polynomials.

To form a deep network by stacking layers of learned activation functions, summation units (and,
optionally, multiplication [16]) aggregate the outputs from the previous layer’s activation functions. The
number of units across L layers is [d= N0,N1, . . . ,NL =m]. The shape of the KAN is the vector of widths
[N0,N1, . . . ,NL]. (see figure 1 for an example of a KAN network with shape [2,3,2,1].) Between layers i and
i+ 1 there are NiNi+1 activation functions. Following [15], ϕℓ,j,i(x) denotes the activation function
connecting unit i in layer ℓ to unit j in layer ℓ+ 1 (ℓ= 0, . . . ,L− 1; i = 1, . . . ,Nℓ; j = 1, . . . ,Nℓ+1). The
summation units then combine the activation functions to propagate information through the network: for
the signal xℓ+1,j into unit j in layer ℓ+ 1, giving

xℓ+1,j =

Nℓ∑
i=1

ϕℓ,j,i (xℓ,i) , j = 1, . . . ,Nℓ+1, (6)

or, in matrix (broadcast) form, xℓ+1 =Φℓ (xℓ), where Φℓ is the functional matrix containing the ϕ’s
connecting layer ℓ and ℓ+ 1. Finally, the full network is represented by composing each Φ in sequence,

KAN(x) = (ΦL−1 ◦ΦL−2 ◦ · · · ◦Φ1 ◦Φ0)(x) . (7)

It is this combination of superpositions of learned activation functions and layer-wise composition that gives
KANs both their expressiveness and makes them distinct from MLPs. Beyond this architectural difference,
KANs are considered more interpretable than MLPs because each activation function ϕ can be individually
examined, as shown in figure 1.

KANs are trained with a loss function L= Ldata +λLreg comprising a data loss and a regularization loss,
with the hyperparameter λ determining regularization strength, with λ= 0 corresponding to no explicit
regularization. Usually the data loss is mean squared error (MSE):

Ldata =
1

n

n∑
i=1

(yi − ŷi)
2
, (8)

4

Mach. Learn.: Sci. Technol. 6 (2025) 035037 J Bagrow and J Bongard

where yi is the true value for observation i and ŷi is the KAN’s prediction for that observation, while the
regularization loss is a combination of an L1 norm and an entropy both defined on the activation functions
(for details, see Liu et al [15]). Activation function parameters are learned via gradient-based optimization to
minimize L on training data. Training commonly includes a refinement process where the resolution of the
B-spline grids is increased; gradually increasing grid resolution during training has been shown to improve
KAN accuracy better than using a finer grid from the start [15]. This grid refinement process acts as a form
of path regularization. In addition to refinement, Liu et al [15] also introduce pruning of weak links as a
post-training regularization step (we discuss the potential of pruning in section 7). KANs are typically
optimized with quasi-Newton methods, particularly limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) [35], also employed in this work, though first-order methods such as SGD or Adam [36] can be
used as well.

2.2. Multi-exit and early exit networks
Multi-exit networks are a deep learning architecture where some or all hidden layers in the network have an
additional branch point called an exit [21–23]. These exits are small subnetworks, often only a single layer,
whose output can be used alongside or instead of the main trunk network’s output. The most common
application is for deep classifiers [21, 22, 37, 38], often for computer vision or language models. In a
classification task, the network is typically given inputs of varying difficulties, For easy inputs, i.e. those far
from the decision boundary, the network may be able to classify accurately using only basic features built by
the earlier layers. But for difficult inputs, the network may need to utilize all the layers to build more complex
features in order to make a successful classification [21]. By equipping the network with multiple exits, an
easy input can reduce inference-time compute by using the output of an early exit only, saving both time and
energy when making predictions [24]. The promise of efficiency gains motivates the study of early exit
networks and learning-to-exit algorithms. This approach goes by various names in the literature, including
deeply supervised networks, cascaded learning, conditional deep learning, and adaptive inference. For more on
multi-exit and early-exit networks, see Scardapane et al [24], Laskaridis et al [39] or Rahmath et al [40].

While multi-exits offer energy-efficient and fast inference, for our purposes, they provide a more
important benefit: they allow deep supervision [21] of the network during training. By introducing a loss
function that combines the outputs of all exits, training gradients enter directly into the earlier hidden layers.
With appropriate losses, this can allow for a network that is trained more accurately or more efficiently, or
both [24].

We argue in this paper that multi-exits are a natural extension of KANs and, unlike alternative forms of
deep supervision such as DenseNet-style forward connections [41] (see Discussion), this form of deep
supervision is especially appropriate to the interpretability advantages of KANs.

3. Adding exits to KANs

A multi-exit KAN augments a standard (single-exit) KAN of shape [d= N0,N1, . . . ,NL =m] with additional
exits as follows. For each layer ℓ of the KAN, beginning from the input and continuing until the
second-to-last hidden layer4, add an exit layer, another KAN network, with shape [Nℓ,m]. The
m-dimensional output of these exits can then be used to predict the same output as the main trunk exit. We
illustrate a multi-exit KAN alongside the corresponding single-exit version in figure 1.

To train a multi-exit KAN requires a data loss and a regularization loss. The regularization loss can
remain the same as in standard KANs, but applied to all activation functions across the network including
those in the exits. The data loss, on the other hand, must now accommodate multiple predictions. A
multi-exit KAN with K exits will now emit K outputs, denoted ŷ(0), ŷ(1), . . . , ŷ(K−1), where ŷ(0) is the output
of the exit connected directly to the KAN input layer and ŷ(K−1) is the output of the main trunk. To train the
entire KAN across all exits, enabling deep supervision [21] of all layers, requires a joint loss function that
combines all these outputs. A straightforward option that we focus on is a weighted average of the individual
exit data losses:

Lmulti =
K−1∑
k=0

wkLk, (9)

where Lk =
∑

i

(
yi − ŷ(k)i

)2
/n is the MSE for exit k and wk is the weight for exit k. The exit weights satisfy∑

kwk = 1. These weights become a hyperparameter to be tuned by the researcher using validation data and

4 The last hidden layer already has an exit, the main trunk output.

5

Mach. Learn.: Sci. Technol. 6 (2025) 035037 J Bagrow and J Bongard

this tuning process in practice has been straightforward. Equation (9) is quite flexible as the exit weights
allow us to prioritize certain exits by weighting them more heavily than others, and individual exits can even
be disabled by zeroing their weights. However, for a network with many exits, these K − 1 degrees of freedom
become a large search space. Therefore, after our main results, in section 6 we propose and apply a
‘learning-to-exit’ method to automatically learn w alongside the KAN parameters.

Number of parameters. With more parameters requiring more training time, it is important to understand
how many more parameters are added to a KAN by adding exits. The number of parameters in a KAN
depends on its architecture, which dictates the number of activation functions, and the number of
parameters per activation function. The parameters per activation function depends on the number and
order of the spline bases (equation (5)), assuming B-splines are used to model the activation functions. This
is the same for activation functions in the main trunk and in the exits, so we only need to consider the
number of activation functions to determine the overhead added to a KAN by adding exits.

The number of activation functions between layers in a standard KAN is the product of the layer widths,
so a KAN with shape [d= N0,N1, . . . ,NL =m] will have

Nact = dN1 +N1N2 + · · ·+NL−1m (10)

activation functions. A multi-exit KAN of the same shape will have those activation functions plus an
additionalm activation functions for each additional exit:

Nact = dN1 +N1N2 + · · ·+NL−2NL−1

+(d+N1 + · · ·+NL−1)m. (11)

Notice that the sum of layer widths will be smaller than the sum of products of adjacent layer widths, (unless
the layers are all one unit), so, unlessm is large, the main trunk dominates the number of parameters in the
KAN. Indeed, for the case of uniform layer width, Nℓ = d for all ℓ, the main trunk will have (L− 1)d2 + dm
activation functions, including the original exit, and the newly added exits will introduce (L− 1)dm
activation functions in total. In this case, the new exits will contribute fewer activation functions than the
main branch whenm< d, typical of regression problems (equation (1)) and a nearly equal number (fewer by
dm) of activation functions whenm= d, typical of dynamical systems modeling (equations (2) or (3)).

Also, note that no one prediction made by the model will use all the activation functions, even if they
were all used during training. Thus, multi-exits provide their benefits with reasonable, often modest,
parameter overhead. Training time overhead is similarly modest, as detailed in appendix A.

4. Results

Experiments compare single-exit and multi-exit KANs on various regression tasks of known functional
forms (section 4.1; figures 2 and 3; table 1), on multi-step forecasting of dynamical systems (section 4.2;
figures 4 and 5), on a model of continual learning (section 4.3, figure 6), and on three real-world datasets
((section 4.4, table 2). For each task, a manual architecture search identifies good KAN shapes and exit
weights, while holding all other hyperparameters fixed. Performance is assessed with the root MSE (RMSE)
of its predictions on test data (as well as R2 values for the real-world data). Regarding the exit weights,
section 6 explores learning the weights automatically with a ‘learning-to-exit’ approach.

4.1. Regression tasks
Our first experiment uses the sinc function,

f(x) =
sin(π x)

π x
. (12)

This one-dimensional function works well as a test because it features both local oscillations and global
decay, and approximation methods often struggle due to its sharp spectral cutoffs, making it a simple but
challenging benchmark for function approximation.

For the sinc function a KAN of shape [1,2,2,2,1] performed well. See appendix A for full details on
training settings and hyperparameters and data generation. This KAN may seem deep for such a function.
KANs can support multiplication units [16], although they are not strictly necessary due to the KART, so we
decided to forgo them for simplicity and therefore expected a deeper KAN to perform better for this task,
hence the aforementioned shape. Parameterizing the multi-exit weighted loss with a simple linear ramp,
w= [1,2,3,4] (unnormalized) worked well: performance on test data was good, with the final exit (shown in

6

Mach. Learn.: Sci. Technol. 6 (2025) 035037 J Bagrow and J Bongard

Figure 2.Multi-exits reduce error in 1D nonlinear regression.

Figure 3.Multi-exits reduce error in 2D nonlinear regression.

figure 2) showing an order of magnitude lower error than the equivalent single-exit network. In fact, three of
the four exits, all but Exit 0, outperformed the single-exit network, indicating robust and parsimonious
(parameter-efficient) capture of the data.

(Note that neither model shown in figure 2 is optimal, a point we return to in section 7 as it illustrates
important aspects of using a multi-exit architecture.)

Next was the function

f(x1,x2) = sin
(
2π x21

)
sin

(
4π x22

)
. (13)

This nonlinear function tests multivariate approximation through spatially-varying frequencies that
challenge learning. Models used a KAN shape of [2,3,2,1] and, for the multi-exit KAN, exit weights
w= [1,2,1]. As shown in figure 3, we found good results for the single-exit KAN but even better for the
multi-exit KAN.

In the multi-exit KAN, unsurprisingly, the initial exit, which lacks any composability, is unable to
represent this function. The next exit, however, does well, achieving error one fourth that of the larger,
single-exit model (RMSE= 0.0045 vs. 0.0232). The final exit at RMSE= 0.007 also outperforms the
same-size single-exit model. This result demonstrates that multi-exit KANs can identify the right level of
complexity, with the middle exit outperforming both simpler and more complex alternatives.

Our final regression experiment uses a sample of equations from the Feynman equation dataset, a
standard function approximation benchmark [42, 43]. These equations cover a range of functional forms
and complexity levels, while representing practically relevant physical relationships.

7

Mach. Learn.: Sci. Technol. 6 (2025) 035037 J Bagrow and J Bongard

Table 1. Performance on Feynman equation dataset. Best model in bold.

Feynman equation Original formula Dimensionless formula # vars RMSE (single) RMSE (multi) (Exit)

I.6.20 e
− θ2

2σ2
√
2πσ2

e
− θ2

2σ2
√
2πσ2

2 1.90× 10−4 1.03× 10−5 (3)

I.6.20b e
− (θ−θ1)

2

2σ2
√
2πσ2

e
− (θ−θ1)

2

2σ2
√
2πσ2

3 1.12× 10−3 1.16× 10−3 (2)

I.9.18 Gm1m2

(x2−x1)2+(y2−y1)2+(z2−z1)2
a

(b−1)2+(c−d)2+(e−f)2 6 5.03× 10−2 2.09× 10−2 (3)

I.12.11 q
(
Ef +Bv sinθ

)
1+ a sinθ 2 4.94 2.41× 10−2 (4)

I.13.12 Gm1m2 (1/r2 − 1/r1) a(1/b− 1) 2 1.55× 10−1 1.31× 10−2 (4)
I.15.3x x−ut√

1− u2

c2

1−a√
1−b2

2 1.32× 10−2 2.86× 10−3 (2)

I.16.6 u+v
1+ uv

c2

a+b
1+ab 2 2.05× 10−3 3.04× 10−4 (2)

I.18.4 m1r1+m2r2
m1+m2

1+ab
1+a 2 2.53× 10−4 1.90× 10−4 (4)

I.26.2 asin(n sinθ2) asin(n sinθ2) 2 1.22× 10−3 7.62× 10−4 (4)
I.27.6 1

n/d2+1/d1
1

1+ab 2 1.77× 10−5 1.54× 10−5 (4)

Each equation was converted to the dimensionless form indicated in the table and used to generate data
(see appendix A). KANs with shape [d,5,5,5,5,1]) were fitted to each dataset. The multi-exit KAN found
good results with w= [0,0,1,1,3/2] (only Exits 2–4 are active) on equation I.27.6, and we proceeded to use
this w across all equations. For each multi-exit KAN, table 1 reports the smallest RMSE across its exits.

As shown in table 1, multi-exit networks achieved lower test RMSE than the single-exit model in nine of
ten cases. Interestingly, and in line with our observations from the 2D regression shown in figure 3, for half
of the problems, the best performing exit is not the final exit, indicating we find more parsimonious
(smaller) models with multi-exits that are also more accurate than larger, single-exit models.

4.2. Data-drivenmodeling of dynamical systems
Beyond regression problems, experiments study how multi-exit architectures perform as models of
dynamical systems, which present challenging time-series forecasting problems due to their chaotic
attractors, evaluating both one-step and multi-step (closed-loop) prediction tasks.

Two dynamical systems are considered. The first is the Ikeda map [44, 45], a famous example of a
practically motivated discrete-time chaotic dynamical system that does not admit an accurate sparse
representation:

xn+1 = 1+µ(xn cos(ϕn)− yn sin(ϕn)) ,

yn+1 = µ(xn sin(ϕn)+ yn cos(ϕn)) ,
(14)

where ϕn = 0.4− 6
(
1+ x2n + y2n

)−1
and bifurcation parameter µ= 0.9. KANs, unlike sparse regression

methods, have been shown to model the Ikeda map well [19].
KANs found good results modeling the Ikeda map with a [2,4,4,4,2] shape and, for the multi-exit KAN,

exit weights w= [0,0,1,2] (the first two exits were disabled). (Note that Panahi et al [19] used a fixed grid
G= 10 while we used grid refinement (see appendix) for both single- and multi-exit KANs.) For one-step
prediction the multi-exit KAN achieved RMSE= 4.560× 10−3 compared to the single-exit’s 5.484× 10−3,
an improvement of 16.8%. For multi-step prediction, as shown in figure 4 the multi-exit KAN tracks the
dynamics for approximately twice as many timesteps as the single-exit KAN before inevitably diverging due
to chaos.

The second dynamical system we consider is a continuous-time model of a three-population ecosystem:

dN

dt
= N

(
1− N

K

)
− xpyp

NP

N+N0
,

dP

dt
= xpP

(
yp

N

N+N0
− 1

)
− xqyq

PQ

P+ P0
,

dQ

dt
= xqQ

(
yq

P

P+ P0
− 1

)
,

(15)

where N, P, and Q are the primary producer, herbivore, and carnivore populations, respectively, and the
carrying capacity K acts as bifurcation parameter. To model a chaotic system, we set K = 0.98, xp = 0.4,
yp = 2.009, xq = 0.08, yq = 2.876, N0 = 0.16129, and P0 = 0.5, ensuring the system exhibits a chaotic
attractor [46]. As with the Ikeda map, KANs are known to model this system well [19].

8

Mach. Learn.: Sci. Technol. 6 (2025) 035037 J Bagrow and J Bongard

Figure 4.Multi-step prediction of the Ikeda map (equation (14)). The multi-exit KAN tracks the dynamics well for about twice as
many steps into the future (shaded regions) as the single-exit KAN. (Blue: ground truth; orange: KAN prediction.).

Figure 5.Multi-step prediction of the ecosystem (equation (15)). The multi-exit KAN encodes the dynamics well, not diverging
significantly until t> 1000.

KANs performed well modeling the ecosystem with shape [3,3,3,3] KANs and w= [2,1,1/2] for the
multi-exit KAN, achieving very good multi-step prediction (figure 5) but slightly worse one-step prediction
(RMSE= 3.774× 10−4 for the multi-exit compared to 3.171× 10−4 for the single-exit KAN). The
single-exit KAN, while still performing well, appears to be overfit to the local trajectory while the multi-exit
KAN better captured the underlying attractor structure.

4.3. Continual learning
As a further demonstration of the usefulness of augmenting KANs with multi-exits, we consider a toy model
of continual learning [15, 47] (figure 6, top row). Here the function to represent is a one-dimensional line of

9

Mach. Learn.: Sci. Technol. 6 (2025) 035037 J Bagrow and J Bongard

Figure 6.Mitigating catastrophic forgetting with multi-exits in a toy model (equation (16)) of continual learning.

five peaks, a multi-modal mixture of Gaussian functions:

f(x) =
5∑

i=1

exp
(
−300(x− ci)

2
)
, (16)

where the centers ci of peaks i were evenly spaced. For this experiment, we generated 100 equally spaced
points around each peak, for a total of 500 samples. KANs can easily fit such data but there is a wrinkle: the
model is not trained on all the data at once. Instead, it sees the data in phases, one peak at a time (figure 6,
top row).

The question becomes whether a KAN can learn a new peak without losing its representation of previous
peaks. As argued by Liu et al [15], shallow KANs are well adapted to this task due to the local nature of their
spline-based activation functions: updating one region of a spline will not affect the fit of other regions,
enabling the KAN to retain the form of a previous peak when incorporating the next peak. However, they
also note that KANs lose this ability as they get deeper, since the composition of splines across multiple layers
reduces their locality, opening the door for catastrophic forgetting. Do multi-exit KANs with their deep
supervision retain more locality and exhibit less forgetting?

As seen in figure 6, we can answer in the affirmative. While both architectures display some forgetting,
with previously learned peaks changing with subsequent data, the effect is worse for the single-exit KAN
(shape [1,5,5,1]), especially when learning the second peak. Compared to the single-exit KAN of the same
architecture (figure 6, middle row), the multi-exit KAN (bottom row) with exit weights w= [1,1,2e3] better
tracks the underlying function across training phases, and when finished displays less than half the error of
the single-exit KAN (RMSE= 0.086 vs. 0.19).

4.4. Real-world data
Now we consider how multi-exit KANs perform on three real-world datasets:

• Airfoil noise. Predict the self-noise (scaled sound pressure, in dB) of a NACA 0012 airfoil for different
angles of attack, free stream velocity, and other features. Data originated from anechoic wind tunnel
experiments [48].

• Power plant energy. Predict the electrical power output (in MW) for different ambient atmospheric condi-
tions, temperature, pressure, relative humidity, and the steam turbine pressure (or vacuum).Data originated
from a 480MWcombined cycle power plant with two gas turbines, one steam turbine, and two heat recovery
steam generators, and were collected over a six-year period (2006–2011) [49, 50].

• Superconductor critical temperature. Predict critical temperature (in K) of superconductors based on mater-
ial properties. The dataset contains many features and statistical variants, so for ease of experimentation,
we selected five representative features capturing composition complexity, electronic structure, and chem-
ical bonding properties: number of elements, weighted mean valence, valence entropy, weighted mean first
ionization energy, and mean electron affinity. These data originated from the superconducting material
database maintained by Japan’s National Institute for Materials Science [51, 52].

All data were retrieved from the UCI Machine Learning Repository [53] (accessed: 23 May 2025). From each
dataset 1k observations for training and 1k for testing were randomly sampled, except for the smaller Airfoil

10

Mach. Learn.: Sci. Technol. 6 (2025) 035037 J Bagrow and J Bongard

Table 2. Performance of single- and multi-exit KANs on three datasets.

Single Multi

Dataset Obs. Features Shape Exit weight RMSE R2 RMSE R2 Exit

Airfoil 1500 5 [5,1] — 5.338 0.421 — — —
[5,5,1] [1,2e3] 5.897 0.293 5.635 0.355 1
[5,5,5,1] [1e3,100,1] 7.130 −0.0332 5.129 0.465 0

Power plant 2000 4 [4,1] — 4.462 0.934 — — —
[4,4,1] [5,2] 4.496 0.932 4.451 0.934 0
[4,4,4,1] [100,1e3,1] 4.601 0.929 4.406 0.935 1

Superconductivity 2000 5 (of 81) [5,1] — 19.524 0.658 — — —
[5,5,1] [10,8] 18.556 0.691 18.353 0.698 1
[5,5,5,1] [1,10,1] 19.278 0.666 18.445 0.695 1

dataset, which contains only 1503 observations in total so 750 observations for training and 750 for testing
were randomly sampled. Besides sampling for training/testing and selecting features for the
superconductivity data, no other filtering or preprocessing was performed.

Single-exit KANs generally performed well with one hidden layer (table 2), but we also considered zero-
and two-layer KANs, and used the same shapes for the corresponding multi-exit KANs (a KAN with shape
[d,m] can only have one exit). Experimentation led to exit weights w that performed well, although for both
shape and weight, there is likely room for improvement. All other hyperparameters and training settings
(grid refinement, etc) were unchanged, leaving even more room to improve. For multi-exit KANs, in all cases
the best performing exit was either Exit 0 or 1.

As seen in table 2, multi-exits improved predictive performance on all three datasets. Interestingly, for all
datasets, multi-exit KANs outperformed at early exits the single-exit KANs of the same size and smaller. For
instance, on Airfoil, the three-exit KAN achieved RMSE= 5.129 at Exit 0, improving on the single-exit KAN
of the same size as that exit (RMSE= 5.338) by 3.9%. To assess generalizability of these improvements, we
evaluated performance on additional test data for two datasets (omitting Airfoil due to data availability). A
one-sided Wilcoxon signed-rank test compared squared residuals between the best single-exit network and
the best multi-exit KAN at its optimal exit (as identified in table 2). In both datasets, the residuals of the
single-exit network were significantly larger than those of the multi-exit KAN (Power plant:W= 15968151,
p< 0.001, n= 7568; Superconductivity:W= 25745299, p< 0.01, n= 10000). These results confirm that
the multi-exit architecture provides statistically significant improvements in predictive accuracy that
generalize to new unseen data.

Multi-exit KANs achieved accurate, generalizable fits while simultaneously being more parsimonious on
all three datasets. While additional training of the single-exit KANs could potentially close these gaps, these
results nevertheless suggest that multi-exit KANs improve performance simultaneously across shallower and
deeper architectures.

5. Learning to exit

The exit weight hyperparameter complicates the architecture search problem, already a potential challenge
when estimating KAN models. Indeed, from our experiments, it is not always obvious a priori what exit
weights will best optimize the KAN. Sometimes uniform weights work well, or an increasing or decreasing
ramp, or sometimes even a heavy weight on the last exit(s) can be beneficial. While KANs train quite quickly
on these smaller scientific problems, allowing rapid iteration to explore the weight simplex, nevertheless, it
would be useful, and data-efficient, to avoid this trial-and-error process. To this end, here we introduce and
apply a basic ‘learning-to-exit’ algorithm which treats the exit weights as learnable parameters, eliminating
them entirely from the architecture search.

5.1. Learnable exit weights
Consider a multi-exit KAN with L exits producing outputs {ŷ(0), ŷ(1), . . . , ŷ(L−1)} for a given input. Until now
multi-exit KANs were trained using a fixed weighted loss (equation (9)):

Lmulti =
∑
i

wiLi

(
ŷ(i),y

)
, (17)

where wi (i = 0, . . . ,L− 1) are predetermined constants and Li is the loss function for exit i. In our
learning-to-exit framework, we introduce exit logits θw = {θ0,θ1, . . . ,θL−1} to be optimized. A softmax

11

Mach. Learn.: Sci. Technol. 6 (2025) 035037 J Bagrow and J Bongard

transformation connects these to equation (17),

wi (θi) =
exp(θi)∑
j exp

(
θj
) , (18)

guaranteeing positive, normalized exit weights. The loss function becomes:

Ljoint (θKAN,θw) =
∑
i

wi (θi)Li

(
ŷ(i)

(
θ
(i)
KAN

)
,y
)
, (19)

where θKAN represents the KAN parameters and θ
(i)
KAN denote the KAN parameters for layers up to and

including exit i.

5.2. Optimization procedure
The optimization problem is formulated as:

θ∗
KAN,θ

∗
w = arg min

θKAN,θw

Ljoint (θKAN,θw) . (20)

Both sets of parameters are updated simultaneously using gradient-based optimization. The gradients with
respect to the exit logits are

∂Ljoint

∂θi
=
∑
j

Lj

(
ŷ(j),y

) ∂wj

∂θi
, (21)

where, from equation (18),

∂wj

∂θi
=

{
wi (1−wi) if i = j,

−wiwj if i ̸= j.
(22)

As before, L-BFGS was used for the joint optimization, but other methods, such as Adam, could be used
instead. Weight logits were initialized with uniform values (θw = 0), but other initializations may be worth
exploring. All other training settings and hyperparameters were unchanged.

5.3. Results
To evaluate the learning-to-exit model, we first apply it to the three datasets studied in section 4.4, focusing
on the three-exit architectures. Comparing to table 2, the results were promising. On every dataset, the
learned model outperformed the single-exit KAN of the same shape. Further, in two of the three cases, the
new model outperformed every model in table 2. Specifically, for Airfoil the new model achieved
RMSE= 4.947 and for Superconductivity RMSE= 18.126, beating the previous best RMSE= 5.129 and
18.353, respectively. On the other hand, for Power plant, it achieved RMSE= 4.558, better than the
single-exit result of RMSE= 4.601 but worse than the multi-exit’s RMSE= 4.406.

Interestingly, the learned exit weights varied for all three datasets, despite all being initialized to
w= [1,1,1]/3. For Airfoil, the final weights were, to machine precision, w= [1,0,0] (focus on first exit), for
Superconductivity, w= [0,0,1] (focus on last exit), and for Power plant, w= [0.002,0.848,0.150] (mixed
focus). Power’s exit logits also converged more slowly than the other two, which may relate to the weaker
relative performance.

Next, we consider the method on some of the earlier synthetic nonlinear regression tasks. For the sinc
function (figure 2), the learning-to-exit algorithm with uniform initial weight converged to weights
w= [0.001,0.003,0.761,0.236], favoring Exit 2. This configuration achieved RMSE= 0.00170, an 89%
improvement over the single-exit baseline (RMSE= 0.0154) although not outperforming the fixed weight
result of RMSE= 0.00145 (which used the deeper Exit 3). For the 2D regression (figure 3), using a
decreasing weight initialization (logits θw = [1,0,−1]), the algorithm converged to weights w≈ [0,1,0],
focusing entirely on Exit 1 with RMSE= 0.00756, a 67% improvement over the single-exit baseline
(RMSE= 0.0232) though slightly worse than our previous best results of RMSE= 0.0045 and 0.0071. A
decreasing weight initialization outperformed a uniform one for this task, biasing toward earlier exits and
promoting parsimony, suggesting that initialization strategies merit further investigation.

Finally, for the dynamical systems, results were mixed. On the food chain ecosystem, the learning-to-exit
algorithm with increasing weight initialization converged to w= [0.108,0.113,0.779] but achieved
RMSE= 5.18× 10−4, underperforming both the single-exit baseline (RMSE= 3.28× 10−4) and the
previous fixed-weight result (RMSE= 3.77× 10−4). For the Ikeda map, the algorithm with uniform

12

Mach. Learn.: Sci. Technol. 6 (2025) 035037 J Bagrow and J Bongard

initialization converged to w≈ [0,1,0,0], focusing on Exit 1 with RMSE= 4.66× 10−3, not matching the
previous fixed-weight performance (RMSE= 4.56× 10−3) but showing a modest improvement over the
single-exit baseline (RMSE= 4.82× 10−3).

Overall, our results highlight the learning-to-exit approach while revealing that performance depends
critically on initialization strategies and problem characteristics. The dynamics of exit selection warrant
further study—for one, we expected a regularization term on the exit logits would be necessary, but these
results suggest otherwise—yet our findings already show that the learning-to-exit model has promise.

6. Discussion

Augmenting KANs with multiple exits improves their performance and often their parsimony. When a
multi-exit KAN performs well at an early exit, it suggests that the full network is deeper than necessary and
functions with fewer levels of composition are sufficient to model the given data. While in principle a deeper
single-exit KAN can be encouraged to simplify, either through regularization or through linearizing the later
activation functions—in fact, both single-exit and multi-exit methods are likely to benefit in general from
fine-tuning hyperparameters and training settings—nevertheless the multi-exit approach is a promising
alternative to achieving this parsimony.

What is the mechanism of action behind the success of multi-exits? The first and more obvious
mechanism is that of deep supervision. The compositional nature of learned activation functions makes
gradient flow through many layers a challenge during training. By connecting the loss function directly to the
earlier layers, training will allow for better conditioning of the activation functions and weights within those
layers. In this sense, the multi-exits fulfill a role similar to that of DenseNet [41]-style forward connections.
In DenseNet architectures, the forward connections link input and hidden layers directly to the final output
layer, and backpropagation can then reach deeper into the network for training. (The other common form of
deep supervision, residual connections (ResNet) [25] is already commonly used in KANs; see equation (5).)
In fact, forward connections in KANs could be viewed as another useful form of deep supervision. However,
they create a large number of outputs at the final layer, which may necessitate a more complex final
functional form, hindering KAN’s goal of interpretability. Multi-exits, in contrast, may be a better alternative
thanks to their potential for parsimony.

A second and less obvious mechanism of action is implicit regularization through the optimization
method. In quasi-Newton methods such as BFGS and L-BFGS, a Hessian approximation captures curvature
information across all parameters simultaneously, enabling the optimizer to find parameter configurations
that balance competing objectives from different exits. In other words, the curvature approximation
regularizes the parameters during training. In our experiments using L-BFGS, the presence of Exit 0 only, the
exit connected directly to the input, still led to improvements in KAN performance. When there are no other
intermediary exits, deep supervision cannot condition the earlier layers—Exit 0 is not on the computational
path of the last exit. Yet, through the optimization process, the network is still able to find better solutions.
For instance, in the experiments with real world data (section 4.4), multi-exit KANs with only one hidden
layer still improved, albeit quite modestly, over single-exit KANs. Implicit regularization was absent when
training with first-order methods such as SGD or Adam [36], which update parameters based on individual
gradient moments rather than capturing the joint parameter dependencies, though such methods still
provide the benefits of deep supervision. This second mechanism, while weaker than deep supervision, offers
another reason why L-BFGS is well-suited for KAN optimization.

Multi-exit models outperformed all same size and smaller KANs on the real world data (table 2), yet we
may encounter cases where the best model comes from directly training the appropriate size KAN without
using multi-exits. Indeed, we know this happens, for instance in the sinc function results (figure 2). A
single-exit KAN with one fewer layer than we presented achieved excellent performance
(RMSE= 1.91×10−4), suggesting that the exit weights shown in the figure were suboptimal. This
observation reveals a key insight: every shallower single-exit network (with otherwise the same layer widths)
represents a special case of the multi-exit architecture, corresponding to one-hot exit weights
w= [1,0, . . .], [0,1,0, . . .], . . . , [0, . . . ,0,1]—the vertices of the exit weight simplex. While these vertices may
represent good solutions,multi-exit architectures can relax into the interior of the simplex to find even better
performance. Indeed, optimizing the sinc function’s exit weights to w= [2.5× 10−4,2.2× 10−2,1× 104,0]
(unnormalized), an interior solution near the vertex corresponding to the better-performing shallower
network, improved performance to RMSE= 1.80× 10−4 at the third exit—a relative improvement of over
5%. This example demonstrates that multi-exit architectures provide both architecture search capabilities
and the potential to discover superior solutions through continuous weight optimization.

While multi-exit KANs introduce additional complexity through exit weights, this does not compromise
KAN’s core interpretability advantages. The activation functions remain visualizable and amenable to

13

Mach. Learn.: Sci. Technol. 6 (2025) 035037 J Bagrow and J Bongard

symbolic regression [16], while learned exit weights can themselves provide interpretable insights into layer
contributions during training. Most importantly, multi-exit KANs improve interpretability by identifying
more parsimonious configurations—when performance is achieved at early exits, fewer layers of functional
composition are needed, yielding inherently more interpretable models.

Despite the promising results presented in this work, some limitations should be acknowledged. Perhaps
the most serious concern is the extra need to set the exit weights when fitting a multi-exit KAN. In all our
experiments, setting w required only brief coarse-grained tuning (and it is addressed by our learning-to-exit
algorithm) but in settings where data are scarce, it may be difficult to optimize the exit weights without
overfitting. Second, we focused our comparisons on single-exit versus multi-exit KANs to isolate the effect of
the architectural change, leaving broader comparisons for future work. While comparisons of single- and
multi-exit KANs with other interpretable architectures such as decision trees, linear models, or
attention-based interpretable networks would provide valuable context, comparing methods with different
notions of interpretability calls for different evaluation protocols. Such systematic comparisons across
different interpretable architectures are beyond the scope of this work but represent an important direction
for future research. Likewise, future work should consider the effects of different hyperparameter values and
training settings, including other sources of regularization such as pruning [15], to ascertain the optimal
settings for different applications and whether multi-exits benefit from or remain robust to such techniques.
Pruning, in particular, while non-differentiable, may interplay with the different exit layers in interesting and
useful ways. Third, while multi-exit architectures often identify more parsimonious models, the
interpretability gains are indirect—the exits themselves do not enhance the interpretability of individual
activation functions, but rather help identify simpler network configurations. Fourth, our learning-to-exit
algorithm should be studied further and, while effective, can surely be improved. Finally, the additional
computational overhead during training, though modest, may become more significant for very deep
networks with many exits.

Several promising directions are worth pursuing. First, receiving multiple predictions from a KAN
immediately brings to mind the idea of ensemble learning [54]. However, ensembles benefit from
uncorrelated or de-correlated models, but the different exits in a multi-exit KANs are not independent.
Investigating methods to encourage heterogeneity among exits while maintaining their collaborative training
could enable ensemble learning. This may also lead to uncertainty quantification capabilities [55, 56]—a key
goal for KANs [57, 58]—through the natural variation of predictions across exits. Second, our
learning-to-exit framework leaves room for improvement, and incorporating ideas from differentiable
architecture search [59] more generally could benefit KANs. Third, exploring exit architectures beyond
simple single-layer KAN exits may yield better performance, although doing so without harming parsimony
may be difficult. Fourth, extending multi-exit architectures from B-splines to other KAN variants
(Fourier-KANs, Wavelet-KANs, Physics-Informed KANs, etc) could reveal whether the benefits generalize
across different basis functions. (We address this in part in appendix B, but more should be done.) Finally,
applying multi-exit KANs to larger-scale scientific problems, particularly in domains like climate modeling
or molecular dynamics where both accuracy and interpretability are crucial, would provide valuable insights
into their practical utility.

Conclusion. We have introduced multi-exit architectures for KANs, demonstrating that augmenting KANs
with additional outputs consistently improves their performance across diverse scientific modeling tasks.
Our experiments revealed that multi-exit KANs often achieve their best performance at earlier exits,
indicating that they successfully identify more parsimonious models without sacrificing—and often
improving—accuracy. While multi-exit architectures introduce additional hyperparameters, our results
show the benefits substantially outweigh this added complexity. This finding is particularly valuable for
scientific applications where interpretability is paramount, as simpler models with fewer compositional
layers are inherently more interpretable. These results suggest that multi-exit architectures represent a
natural and effective enhancement to KANs, offering researchers a principled approach to finding the right
balance between model complexity and performance.

Data availability statement

No new data were created or analysed in this study. Data will be available from 03 November 2025.

Appendix A. Materials andmethods

Implementation and training. KANs were implemented with the PyKAN library v0.2.8 (https://github.com/
KindXiaoming/pykan), based on PyTorch v2.6.0 [60]. To fit KAN models using training data, the L-BFGS

14

https://github.com/KindXiaoming/pykan
https://github.com/KindXiaoming/pykan

Mach. Learn.: Sci. Technol. 6 (2025) 035037 J Bagrow and J Bongard

algorithm [35] was used with history size 10, strong Wolfe conditions for line search, and convergence
tolerances of 10−32 for gradient norm, parameter changes, and curvature conditions. Unless otherwise
noted, fitting employed a progressive grid refinement strategy, iteratively refining the spline basis functions
through a sequence of increasing grid sizes G= 3,5,10,20, with 30 optimization steps performed at each
grid resolution. Spline regularization was not used (λ= 0) as we found for our data and training settings that
it always lowered performance. Instead, grid refinement acts as implicit regularization and allows the model
to first capture coarse-grained patterns before learning finer details, leading to more stable convergence and
better generalization performance [15]. Unless otherwise noted, all other training settings and
hyperparameters were kept at the default values of PyKAN, including the learning rate of 1.0 and the default
spline order K = 3 and grid update schedule (grid points were equally spaced and updated every 10
optimization steps). Multiplication units were not used. The same training procedure and settings were
always used for corresponding single-exit and multi-exit KANs. Fine-tuning these settings would likely
further improve performance, but both types of KANs would be expected to benefit. Training times were
modest with these hyperparameters and data, generally taking 30–90 s for single-exit KANs on a MacBook
Pro (M1 Max CPU); the one exception being training on the Ikeda map that took approximately 7 min due
in part to the dataset’s high sampling rate. Multi-exit KANs generally require 50%–80% more time to train
than the corresponding single-exit KAN, in line with our parameter count estimates (section 3). Our source
code is available at https://github.com/bagrow/multi-exit-KAN.

Experimental details. For the 1D and 2D regression tasks, n= 1000 training and n= 1000 testing points
were generated, with x∼ U

(
[xmin,xmax]

d
)
and y generated from x, without additional noise, according to the

given equation. For the fits illustrated in figure 1, n= 1000 training points and n= 200 testing points were
used, as well as a single G= 5 grid, 30 optimization steps, KAN shape [2,3,2,1] and w= [1,1,1]. The
Feynman equations dataset used the same data generating process as the 1D and 2D regression tasks, but
each exogenous variable’s range was given by the range of values in the released AI Feynman dataset [42]. For
the dynamical systems experiments, data for each system was generated and split into training and testing
folds following the procedure and parameters of Panahi et al [19]. For training, a learning rate of 0.1 was
used for both systems, and for the Ikeda map specifically, grid updates were not used and 50 optimization
steps per grid resolution instead of 30 were used. Other training settings were unchanged from other
experiments. The continual learning experiment used 100 samples per peak, a grid size of 20 without
refinement or updates, 10 L-BFGS steps per phase, and all other settings at PyKAN defaults. Details for the
three real-world datasets were covered in section 4.4.

Appendix B. Multi-Exit Fourier KANs

To demonstrate that the benefits of multi-exits are not specific to the B-spline formulation, we implemented
a Fourier-based variant as preliminary validation of multi-exits across different activation function
representations.

Fourier KAN formulation. Following [61] (see also [32]), each activation function ϕℓ,j,i(x) connecting unit i
in layer ℓ to unit j in layer ℓ+ 1 is parameterized using Fourier series:

ϕℓ,j,i (x) =
G∑

k=1

[
aℓ,j,i,k cos(ωkx)+ bℓ,j,i,k sin(ωkx)

]
(23)

where aℓ,j,i,k and bℓ,j,i,k are learnable coefficients, G is the number of frequency components (analogous to
grid size in B-spline KANs), and ωk = kω0 are the fundamental frequencies scaled by a factor ω0 to prevent
high-frequency oscillations over the input domain. Coefficients are initialized from a normal distribution

N (0,σ2) with σ = 1/
(√

d(k+ 1)2
)
to bias learning toward lower frequencies.

The layer output aggregates contributions from all input connections:

xℓ+1,j =

Nℓ∑
i=1

G∑
k=1

[
aℓ,j,i,k cos(ωkxℓ,i)+ bℓ,j,i,k sin(ωkxℓ,i)

]
+ bj (24)

where bj is a learnable bias term.
Multi-exits are added and trained as before (section 3) with the exception that analogues of grid

refinement and grid updates are not used.

Experimental validation. We tested Fourier KANs on the polynomial f(x) = x3 − 2x2 + x+ 1 over x ∈ [0,3],
deliberately choosing a non-trigonometric target to avoid favoring the Fourier parameterization. This

15

https://github.com/bagrow/multi-exit-KAN

Mach. Learn.: Sci. Technol. 6 (2025) 035037 J Bagrow and J Bongard

parallels our use of the sinc function (equation (12)) for B-spline KANs, ensuring neither method receives an
unfair advantage.

We employed a shape [1,2,2,1] architecture with G= 5 frequency components and ω0 = π/10, trained
using L-BFGS optimization for 30 steps.

The single-exit Fourier KAN achieved an RMSE= 0.00230. Multi-exit variants with two exit weight
configurations demonstrated the effectiveness of the approach:

• w= [0,1,100]: The final exit (Exit 2) achieved RMSE= 0.00145, a 37% improvement.
• w= [0,100,1]: The intermediate exit (Exit 1) achieved RMSE= 0.000761, a 67% improvement. This config-
uration also outperformed a shape [1,2,1] (same as Exit 1) single-exit KAN that achieved RMSE= 0.00113.

Notably, the second configuration shows that multi-exit training can identify more parsimonious solutions:
the intermediate exit achieved superior performance compared to both the single-exit baseline and the
deeper final exit, indicating that a shallower network architecture was sufficient for this task.

These results confirm that multi-exit architectures generalize beyond B-spline parameterizations,
improving performance and identifying optimal depths across multiple KAN variants.

ORCID iD

James Bagrow 0000-0002-4614-0792

References

[1] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L and Zdeborová L 2019 Machine learning and the
physical sciences Rev. Mod. Phys. 91 045002

[2] Roscher R, Bohn B, Duarte M F and Garcke J 2020 Explainable machine learning for scientific insights and discoveries IEEE Access
8 42200–16

[3] Xu Y et al 2021 Artificial intelligence: a powerful paradigm for scientific research The Innov. 2 100179
[4] Wang H et al 2023 Scientific discovery in the age of artificial intelligence Nature 620 47–60
[5] Karniadakis G E, Kevrekidis I G, Lu L, Perdikaris P, Wang S and Yang L 2021 Physics-informed machine learning Nat. Rev. Phys.

3 422–40
[6] Kashinath K et al 2021 Physics-informed machine learning: case studies for weather and climate modelling Phil. Trans. R. Soc. A

379 20200093
[7] Lam R et al 2023 Learning skillful medium-range global weather forecasting Science 382 1416–21
[8] Jumper J et al 2021 Highly accurate protein structure prediction with alphafold Nature 596 583–9
[9] Montáns F J, Chinesta F, Gómez-Bombarelli R and Kutz J N 2019 Data-driven modeling and learning in science and engineering

Comptes Rendus MéCanique vol 347 (Data-Based Engineering Science and Technology) pp 845–55
[10] Bradley W, Kim J, Kilwein Z, Blakely L, Eydenberg M, Jalvin J, Laird C and Boukouvala F 2022 Perspectives on the integration

between first-principles and data-driven modeling Comput. Chem. Eng. 166 107898
[11] Bell A, Solano-Kamaiko I, Nov O and Stoyanovich J 2022 It’s just not that simple: an empirical study of the accuracy-explainability

trade-off in machine learning for public policy Proc. 2022 ACM Conf. on Fairness, Accountability and Transparency pp 248–66
[12] Ferrario A and Loi M 2022 How explainability contributes to trust in AI Proc. 2022 ACM Conf. on Fairness, Accountability and

Transparency pp 1457–66
[13] Van Noorden R and Perkel J M 2023 AI and science: what 1,600 researchers think Nature 621 672–5
[14] Castelvecchi D 2016 Can we open the black box of AI? Nature News 538 20
[15] Liu Z, Wang Y, Vaidya S, Ruehle F, Halverson J, Soljacic M, Hou T Y and Tegmark M 2025 KAN: Kolmogorov–Arnold networks

13th Int. Conf. on Learning Representations
[16] Liu Z Ma P Wang Y Matusik W and Tegmark M 2024 KAN 2.0: Kolmogorov–ArnoldNetworks meet science (arXiv:2408.10205)
[17] Toscano J D, Oommen V, Varghese A J, Zou Z, Daryakenari N A, Wu C and Karniadakis G E 2025 From PINNs to PIKANs: recent

advances in physics-informed machine learningMach. Learn. Comput. Sci. Eng. 1 1–43
[18] Koenig B C, Kim S and Deng S 2024 KAN-ODEs: Kolmogorov–Arnold network ordinary differential equations for learning

dynamical systems and hidden physics Comput. Methods Appl. Mech. Eng. 432 117397
[19] Panahi S, Moradi M, Bollt E M and Lai Y-C 2025 Data-driven model discovery with Kolmogorov–Arnold networks Phys. Rev. Res.

7 023037
[20] Elsken T, Metzen J H and Hutter F 2019 Neural architecture search: a survey J. Mach. Learn. Res. 20 1–21
[21] Lee C-Y, Xie S, Gallagher P, Zhang Z and Tu Z 2015 Deeply-supervised nets Artificial Intelligence and Statistics (PMLR) pp 562–70
[22] Teerapittayanon S, McDanel B and Kung H 2016 BranchyNet: fast inference via early exiting from deep neural networks 2016 23rd

Int. Conf. on Pattern Recognition (ICPR) pp 2464–9
[23] Panda P, Sengupta A and Roy K 2016 Conditional deep learning for energy-efficient and enhanced pattern recognition Proc. 2016

Conf. on Design, Automation & Test in Europe, DATE’16 (San Jose, CA, USA) EDA Consortium) pp 475–80
[24] Scardapane S, Scarpiniti M, Baccarelli E and Uncini A 2020 Why should we add early exits to neural networks? Cogn. Comput.

12 954–66
[25] He K, Zhang X, Ren S and Sun J 2016 Deep residual learning for image recognition Proc. IEEE Conf. on Computer Vision and

Pattern Recognition pp 770–8
[26] Hornik K, Stinchcombe M and White H 1989 Multilayer feedforward networks are universal approximators Neural Netw. 2 359–66
[27] Kolmogorov A N 1961 On the Representation of Continuous Functions of Several Variables by Superpositions of Continuous Functions

of a Smaller Number of Variables (American Mathematical Society)

16

https://orcid.org/0000-0002-4614-0792
https://orcid.org/0000-0002-4614-0792
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1109/ACCESS.2020.2976199
https://doi.org/10.1016/j.xinn.2021.100179
https://doi.org/10.1016/j.xinn.2021.100179
https://doi.org/10.1038/s41586-023-06221-2
https://doi.org/10.1038/s41586-023-06221-2
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1098/rsta.2020.0093
https://doi.org/10.1098/rsta.2020.0093
https://doi.org/10.1126/science.adi2336
https://doi.org/10.1126/science.adi2336
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1016/j.compchemeng.2022.107898
https://doi.org/10.1016/j.compchemeng.2022.107898
https://doi.org/10.1038/d41586-023-02980-0
https://doi.org/10.1038/d41586-023-02980-0
https://doi.org/10.1038/538020a
https://doi.org/10.1038/538020a
https://arxiv.org/abs/2408.10205
https://doi.org/10.1007/s44379-025-00015-1
https://doi.org/10.1007/s44379-025-00015-1
https://doi.org/10.1016/j.cma.2024.117397
https://doi.org/10.1016/j.cma.2024.117397
https://doi.org/10.1103/PhysRevResearch.7.023037
https://doi.org/10.1103/PhysRevResearch.7.023037
https://doi.org/10.1007/s12559-020-09734-4
https://doi.org/10.1007/s12559-020-09734-4
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8

Mach. Learn.: Sci. Technol. 6 (2025) 035037 J Bagrow and J Bongard

[28] Arnold V I 2009 On functions of three variables Collected Works: Representations of Functions, Celestial mechanics and KAM Theory
1957–1965 5–8

[29] Kolmogorov A N 1957 On the representations of continuous functions of many variables by superposition of continuous functions
of one variable and addition Dokl. Akad. Nauk USSR vol 114 pp 953–6

[30] Li Z 2024 Kolmogorov–Arnold networks are radial basis function networks (arXiv:2405.06721)
[31] Xu J, Chen Z, Li J, Yang S, Wang W, Hu X, and Ngai E C-H 2024 FourierKAN-GCF: fourier Kolmogorov–Arnoldnetwork–an

effective and efficient feature transformation for graph collaborative filtering (arXiv:2406.01034)
[32] Reinhardt E, Ramakrishnan D and Gleyzer S 2025 SineKAN: Kolmogorov–Arnoldnetworks using sinusoidal activation functions

Front. Artif. Intell. 7 1462952
[33] Sidharth S, Keerthana A, Gokul R and Anas K 2024 Chebyshev polynomial-based Kolmogorov–Arnold networks: an efficient

architecture for nonlinear function approximation (arXiv:2405.07200)
[34] Bozorgasl Z and Chen H 2024 Wav-KAN: wavelet Kolmogorov–Arnold networks (arXiv:2405.12832)
[35] Liu D C and Nocedal J 1989 On the limited memory BFGS method for large scale optimizationMath. Program. 45 503–28
[36] Kingma D P and Ba J 2014 Adam: a method for stochastic optimization (arXiv:1412.6980)
[37] Zhou W, Xu C, Ge T, McAuley J, Xu K and Wei F 2020 Bert loses patience: fast and robust inference with early exit Advances in

Neural Information Processing Systems vol 33, ed H Larochelle, M Ranzato, R Hadsell, M Balcan and H Lin (Curran Associates, Inc)
pp 18330–41

[38] Xin J, Tang R, Yu Y and Lin J 2021 BERxiT: early exiting for bert with better fine-tuning and extension to regression Proc. 16th
Conf. of the European Chapter of the Association for Computational Linguistics: Main Volume, ed P Merlo, J Tiedemann and
R Tsarfaty (Online)) pp 91–104

[39] Laskaridis S, Kouris A and Lane N D 2021 Adaptive inference through early-exit networks: design, challenges and directions Proc.
5th Int. Workshop on Embedded and Mobile Deep Learning, EMDL’21 (New York, NY, USA) (Association for Computing Machinery)
pp 1–6

[40] Rahmath H, Srivastava P V, Chaurasia K, Pacheco R G and Couto R S 2024 Early-exit deep neural network - a comprehensive
survey ACM Comput. Surv. 57 1–37

[41] Huang G, Liu Z, Maaten L V D andWeinberger K Q 2017 Densely connected convolutional networks Proc. IEEE Conf. on Computer
Vision and Pattern Recognition pp 4700–8

[42] Udrescu S-M and Tegmark M 2020 AI Feynman: a physics-inspired method for symbolic regression Sci. Adv. 6 eaay2631
[43] Udrescu S-M, Tan A, Feng J, Neto O, Wu T and Tegmark M 2020 AI Feynman 2.0: pareto-optimal symbolic regression exploiting

graph modularity Advances in Neural Information Processing Systems vol 33 pp 4860–71
[44] Ikeda K 1979 Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system Opt. Commun.

30 257–61
[45] Hammel S, Jones C and Moloney J V 1985 Global dynamical behavior of the optical field in a ring cavity J. Opt. Soc. Am. B 2 552–64
[46] McCann K and Yodzis P 1994 Nonlinear dynamics and population disappearances Am. Naturalist 144 873–9
[47] van Deventer H and Bosman A S 2024 Distal interference: exploring the limits of model-based continual learning

(arXiv:2402.08255)
[48] Brooks T F Pope D S and Marcolini M A 1989 Airfoil self-noise and prediction Tech. Rep. NASA-RP-1218, NASA Langley Research

Center, NASA Reference Publication 1218
[49] Kaya H, Tüfekci P and Gürgen F S 2012 Local and global learning methods for predicting power of a combined gas & steam turbine

Proc. Int. Conf. on Emerging Trends in Computer and Electronics Engineering ICETCEE pp 13–18
[50] Tüfekci P 2014 Prediction of full load electrical power output of a base load operated combined cycle power plant using machine

learning methods Int. J. Electr. Power Energy Syst. 60 126–40
[51] Hamidieh K 2018 A data-driven statistical model for predicting the critical temperature of a superconductor Comput. Mater. Sci.

154 346–54
[52] C. for Basic research on materials, MDR supercon datasheet ver.240322
[53] Kelly M Longjohn R, and Nottingham K The UCI machine learning repository
[54] Sagi O and Rokach L 2018 Ensemble learning: a surveyWiley Interdiscip. Rev.: Data Min. Knowl. Discov. 8 e1249
[55] Smith R C 2013 Uncertainty Quantification: Theory, Implementation and Applications (Society for Industrial and Applied

Mathematics)
[56] Abdar M et al 2021 A review of uncertainty quantification in deep learning: techniques, applications and challenges Inf. Fusion

76 243–97
[57] Hassan MM 2024 Bayesian Kolmogorov–Arnold Networks (Bayesian-KANs): a probabilistic approach to enhance accuracy and

interpretability (arXiv:2408.02706)
[58] Mollaali A, Moya C B, Howard A A, Heinlein A, Stinis P, and Lin G 2025 Conformalized-KANs: uncertainty quantification with

coverage guarantees for Kolmogorov–Arnold Networks (KANs) in scientific machine learning (arXiv:2504.15240)
[59] Liu H, Simonyan K and Yang Y 2019 DARTS: differentiable architecture search Int. Conf. on Learning Representations
[60] Paszke A 2019 PyTorch: an imperative style, high-performance deep learning library (arXiv:1912.01703)
[61] GistNoesis FourierKAN 2024 (available at: https://github.com/GistNoesis/FourierKAN) (Accessed 7 July 2021)

17

https://arxiv.org/abs/2405.06721
https://arxiv.org/abs/2406.01034
https://doi.org/10.3389/frai.2024.1462952
https://doi.org/10.3389/frai.2024.1462952
https://arxiv.org/abs/2405.07200
https://arxiv.org/abs/2405.12832
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3698767
https://doi.org/10.1145/3698767
https://doi.org/10.1126/sciadv.aay2631
https://doi.org/10.1126/sciadv.aay2631
https://doi.org/10.1016/0030-4018(79)90090-7
https://doi.org/10.1016/0030-4018(79)90090-7
https://doi.org/10.1364/JOSAB.2.000552
https://doi.org/10.1364/JOSAB.2.000552
https://doi.org/10.1086/285714
https://doi.org/10.1086/285714
https://arxiv.org/abs/2402.08255
https://doi.org/10.1016/j.ijepes.2014.02.027
https://doi.org/10.1016/j.ijepes.2014.02.027
https://doi.org/10.1016/j.commatsci.2018.07.052
https://doi.org/10.1016/j.commatsci.2018.07.052
https://doi.org/10.1016/j.inffus.2021.05.008
https://doi.org/10.1016/j.inffus.2021.05.008
https://arxiv.org/abs/2408.02706
https://arxiv.org/abs/2504.15240
https://arxiv.org/abs/1912.01703
https://github.com/GistNoesis/FourierKAN

	Multi-exit Kolmogorov–Arnold networks: enhancing accuracy and parsimony
	1. Introduction
	2. Background
	2.1. KANs
	2.2. Multi-exit and early exit networks

	3. Adding exits to KANs
	4. Results
	4.1. Regression tasks
	4.2. Data-driven modeling of dynamical systems
	4.3. Continual learning
	4.4. Real-world data

	5. Learning to exit
	5.1. Learnable exit weights
	5.2. Optimization procedure
	5.3. Results

	6. Discussion
	Appendix A. Materials and methods
	Appendix B. Multi-Exit Fourier KANs
	References

