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Abstract Kolmogorov-Arnold Networks (KANs) offer a promising path toward interpretable machine learning: their learnable
activations can be studied individually, while collectively fitting complex data accurately. In practice, however, trained activations
often lack symbolic fidelity, learning pathological decompositions with no meaningful correspondence to interpretable forms. We
propose Softly Symbolified Kolmogorov-Arnold Networks (S2KAN), which integrate symbolic primitives directly into training. Each
activation draws from a dictionary of symbolic and dense terms, with learnable gates that sparsify the representation. Crucially,
this sparsification is differentiable, enabling end-to-end optimization, and is guided by a principled Minimum Description Length
objective. When symbolic terms suffice, S2KAN discovers interpretable forms; when they do not, it gracefully degrades to dense
splines. We demonstrate competitive or superior accuracy with substantially smaller models across symbolic benchmarks, dynamical
systems forecasting, and real-world prediction tasks, and observe evidence of emergent self-sparsification even without regularization
pressure.

Keywords— differentiable sparsity, neuro-symbolic learning,
symbolic regression, minimum description length, dynami-
cal systems, interpretable neural networks, scientific machine
learning

1 Introduction
Neural networks and deep learning are powerful but opaque
tools for modeling complex systems [1, 2, 3, 4]. In scien-
tific problems, accurate predictions are often not enough, and
practitioners seek interpretable models that reveal underly-
ing mechanisms, suggest novel hypotheses, or confirm exist-
ing theories [5, 6, 7]. Such interpretability can be achieved
through parsimony, seeking smaller or less parameterized
models [8, 9, 10, 11], or through the use of interpretable
building blocks, components such as mathematical functions
or symbolic expressions that can be interrogated and under-
stood individually [12, 13, 14, 15]. These avenues are not
mutually exclusive, and in fact the most interpretable mod-
els often combine both: sparse combinations of symbolic
primitives that are simultaneously compact and semantically
meaningful.

Kolmogorov–Arnold Networks (KANs) [16] have emerged
as a promising alternative to traditional neural networks, re-
placing fixed activation functions with learnable univariate
functions on each edge. Using flexible representations for

the activation functions allows KANs to be highly perfor-
mant [16, 17, 18]. But this design also lets practitioners
examine the internal workings of the KAN by inspecting the
learned activations, and possibly infer mathematical expres-
sions (e.g., sin(𝑥), 𝑒𝑥 , 𝑥2) for those activations [16, 19], al-
though interpreting many such functions becomes challeng-
ing in large KANs. This combination of accuracy and in-
terpretability makes KANs attractive for scientific machine
learning [20, 21, 22].

However, the standard KAN reliance on flexible dense rep-
resentations is at odds with interpretability. Splines, the typ-
ical choice of representation, can fit arbitrary shapes, but
the resulting activations may bear no resemblance to rec-
ognizable mathematical functions. The standard remedy—
post-hoc symbolification, where each trained activation is
independently fitted to a symbolic form [16]—is problem-
atic: splines may learn shapes difficult to fit symbolically,
each activation is converted without considering network-
level effects, and symbolic forms are not explored during
training. The result: learned activations often lack symbolic
fidelity: accurate predictions but no meaningful correspon-
dence to interpretable expressions (Fig. 1). What is needed
is a method that treats symbolic and dense representations
on equal footing, automatically selects among them while
pruning unnecessary components, and does so continuously
during training—yielding compact, interpretable models that
retain competitive accuracy.
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Figure 1: Learning 𝑦 = sinc(𝑥) = sin(𝑥)/𝑥 with a multiplica-
tive Kolmogorov–Arnold network (KAN). The standard KAN lacks
symbolic fidelity, exhibiting a numerically accurate but otherwise
pathological decomposition, whereas S2KAN perfectly captures the
underlying sinc function.

We propose Softly Symbolified KANs (S2KAN), which
integrate symbolic primitives and sparse bases directly into
the training process through a differentiable gating mecha-
nism. Our key contributions are:

• An activation function dictionary that combines dense
representations, sparse basis functions, and symbolic
primitives;

• A training process that symbolifies and sparsifies
jointly with the rest of learning, with emergent self-
sparsification even without regularization pressure;

• A Minimum Description Length objective that provides
a principled accuracy–parsimony tradeoff.

Our method provides a best-of-both-worlds approach: when
activation functions admit sparse symbolic representations,
S2KAN selects interpretable basis functions; when they do
not, the method gracefully degrades to dense representations,
recovering standard KAN behavior. This ensures that sym-
bolic structure is discovered when present, without sacrificing
approximation quality when it is not. Rather than maximizing
accuracy alone, S2KAN exposes the tradeoff between pre-
dictive performance and model complexity—often achieving
competitive or even superior accuracy with far smaller mod-
els.

The rest of this paper is organized as follows. Section 2 de-
scribes Kolmogorov–Arnold networks and the standard sym-
bolification method. Section 3 presents the Softly Symbol-
ified KAN (S2KAN) method: the activation function dictio-
nary, differentiable gating mechanism, and MDL-based loss
function. Section 4 evaluates S2KAN on symbolic bench-
marks, chaotic dynamical systems, and real-world prediction
tasks. Section 5 examines the learning dynamics and self-
sparsification behavior. We conclude with a discussion in
Sec. 6.

2 Background

2.1 Kolmogorov–Arnold Networks
Motivated by the Kolmogorov–Arnold Representation The-
orem [23, 24, 25], a KAN with 𝐿 layers and shape
[𝑛0, 𝑛1, . . . , 𝑛𝐿] computes:

𝑥
(ℓ+1)
𝑗

=

𝑛ℓ∑︁
𝑖=1

𝜙ℓ𝑖 𝑗 (𝑥 (ℓ )𝑖
) (1)

where 𝜙ℓ𝑖 𝑗 : R → R is a learnable univariate activation
function on the edge from neuron 𝑖 in layer ℓ to neuron 𝑗 in
layer ℓ + 1.

The 𝜙ℓ𝑖 𝑗 can be parameterized in many ways, includ-
ing radial basis functions [26], Fourier series [27] or sinu-
soidal functions [28], wavelets [29], and Chebyshev polyno-
mials [30]. The original KAN formulation [16, 19] used a
combination of a B-spline and a fixed base function 𝑏(𝑥)
(typically SiLU):

𝜙(𝑥) = 𝑤𝑏𝑏(𝑥) + 𝑤𝑠spline(𝑥), (2)

where 𝑤𝑏 and 𝑤𝑠 are learnable scale parameters, and

spline(𝑥) =
𝐺+𝐾∑︁
𝑚=1

𝑐𝑚𝐵𝑚 (𝑥), (3)

where 𝐵𝑚 are B-spline basis functions of order 𝐾 over 𝐺
grid intervals, and 𝑐𝑚 are learnable coefficients. Because the
B-splines are polynomials, the nonpolynomial base function
𝑏(𝑥) ensures that composition through many layers of the
KAN does not just result in a high-order polynomial.

When using B-splines, KANs also implement grid up-
dates, where the spline knots are periodically adjusted to
better cover the activation function’s input range, and grid
refinement, where the number of knots is increased during
training; see [16] for details. KAN 2.0 [19] introduces multi-
plication nodes (Fig. 1), which compute products of incoming
activations rather than sums, enabling more compact repre-
sentations of multiplicative functions.

2.2 Post-hoc symbolification
Standard KANs rely exclusively on dense representations and
do not discover symbolic forms during training. To find sym-
bolic representations, KANs symbolify after training by fit-
ting each learned activation 𝜙ℓ𝑖 𝑗 to candidate symbolic func-
tions from a library S = {1, 𝑥, 𝑥2, 1/𝑥, sin, cos, exp, log, . . .}.
For each candidate 𝑆 ∈ S, the method solves the separable
optimization:

𝑎∗, 𝑏∗, 𝑐∗, 𝑑∗ = arg min
𝑎,𝑏,𝑐,𝑑

∑︁
𝑥

[
𝜙ℓ𝑖 𝑗 (𝑥) − (𝑐𝑆(𝑎𝑥 + 𝑏) + 𝑑)

]2
,

(4)
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where the sum is over preactivation values. Fitted candidates
are ranked by a weighted sum of complexity (via user-defined
scores) and 𝑅2; the top-ranked function is selected if its 𝑅2

exceeds a threshold. For full details, see [16, 19].
This approach has limitations: (1) the learned activa-

tion (base + spline) may be difficult to fit symbolically, (2)
each function is converted independently without consider-
ing network-level effects, and (3) symbolic forms are never
explored during training. The first limitation is particularly
problematic: there is no a priori reason why the learned
activation functions should map cleanly to symbolic forms.
Indeed, in practice one often observes degenerate or patholog-
ical decompositions that, while making accurate predictions,
lack what we call symbolic fidelity.

3 S2KAN: softly symbolifying KANs
Instead of learning activations and converting them post hoc,
we propose learning activation functions as combinations of
the standard KAN components and other symbolic terms.
Depending on the choice of terms, the activation functions
can form an overcomplete dictionary of functions (Sec. 3.1)
so sparsification will be necessary to avoid overfitting and sta-
bilize training. For a single activation function in isolation,
this would be naturally approached via ℓ1 regularization (e.g.,
LASSO), but in KANs activation functions are composed
across layers, requiring end-to-end differentiability through
the selection mechanism. We therefore introduce binary gat-
ing variables that select which terms are active, made differ-
entiable via a continuous relaxation of the ℓ0 norm (Sec. 3.2),
with selection guided by a Minimum Description Length ob-
jective (Sec. 3.3).

3.1 Activation function dictionary
We organize the activation function using three categories of
terms (or atoms):

𝜙(𝑥) =
∑︁
𝑠∈S

𝑧𝑠𝑐𝑠𝜓𝑠 (𝑥) +
∑︁
𝑓 ∈F

𝑧 𝑓 𝑐 𝑓𝜓 𝑓 (𝑥) +
∑︁
𝑟∈R

𝑧𝑟𝜙𝑟 (𝑥; c𝑟 ),

(5)
where the 𝑧 ∈ {0, 1} are binary gates selecting active
terms (Sec. 3.2), 𝑐 ∈ R are learnable coefficients, and each
𝜓 : R → R is a candidate univariate function. HereS indexes
the symbolic library, F indexes sparse function bases, and R
indexes dense parameterized representations. Equation (5)
allows researchers to design problem-specific combinations
as needed. Using the standard KAN B-spline dense repre-
sentation for R and setting S = F = ∅, Eq. (5) recovers the
original KAN formulation.

In this work, we consider the following dictionary:

Symbolic library (S) A collection of elementary functions

such as 1, 𝑥, sin(𝑥), 1/𝑥, log |𝑥 |, . . .. Each function re-
ceives an independent gate and coefficient.

Sparse function bases (F ) Families of orthogonal or struc-
tured functions indexed by degree/frequency:

• Chebyshev polynomials: 𝑇𝑝 (𝑥) for degree 𝑝 =

0, 1, . . . , 𝑃, computed via recurrence.
• Fourier basis: {sin(𝑞𝑥), cos(𝑞𝑥)} for mode 𝑞 =

1, . . . , 𝑄.

Each term receives an independent gate and coefficient.

Dense representations (R) A single gate controls an entire
parameterized function class:

• B-spline with SiLU residual: 𝜙spline (𝑥; c) =

𝑐0SiLU(𝑥) + ∑𝐵
𝑏=1 𝑐𝑏𝐵𝑏 (𝑥), where the 𝐵𝑏 are B-

spline basis functions on a fixed knot sequence and
c = (𝑐0, 𝑐1, . . . , 𝑐𝐵).

This formulation allows for graceful degradation: when
symbolic terms are insufficient—whether because the under-
lying function resists symbolic description or because the ar-
chitecture lacks capacity to express it—the method naturally
falls back to the dense spline representation.

3.2 Differentiable sparsity via Hard Concrete
Distribution

We follow the ℓ0 regularization approach of [11], which lever-
ages the reparameterization trick to provide a continuous, dif-
ferentiable relaxation of binary gates while maintaining the
ability to produce exact zeros and ones.

For each gate 𝑖, introduce a learnable parameter 𝛼𝑖 ∈ R and
define a stochastic binary variable via the Concrete (Gumbel-
Softmax) distribution with temperature 𝜏 > 0:

𝑠𝑖 = 𝜎

(
log 𝑢 − log(1 − 𝑢) + 𝛼𝑖

𝜏

)
, 𝑢 ∼ Uniform(0, 1),

(6)
where 𝜎(·) is the sigmoid function. This provides a contin-
uous relaxation in (0, 1), but cannot produce exact boundary
values. To assign finite probability mass to exactly 0 and 1,
apply a stretched and rectified transformation with parameters
𝛾 < 0 < 𝜁 (typically 𝛾 = −0.1, 𝜁 = 1.1):

𝑠𝑖 = 𝑠𝑖 (𝜁 − 𝛾) + 𝛾, (7)

𝑧𝑖 = min(1,max(0, 𝑠𝑖)). (8)

The stretch extends the range to (𝛾, 𝜁) before clipping to
[0, 1], allowing the relaxed gate to reach the boundaries ex-
actly during training.
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The expected value of this gate, or gate probability, used
for regularization (Sec. 3.3), has a closed form:

E[𝑧𝑖] = 𝜎
(
𝛼𝑖 − 𝜏 log

−𝛾
𝜁

)
. (9)

During training, sample {𝑧𝑖} and learn updates to their proba-
bilities jointly when updating other parameters. At inference,
deterministically threshold: 𝑧𝑖 = 1{E[ 𝑧̃𝑖 ]>1/2} .

The gradient of the expected ℓ0 penalty with respect to gate
parameters is

𝜕E[𝑧𝑖]
𝜕𝛼𝑖

= E[𝑧𝑖] (1 − E[𝑧𝑖]) . (10)

This gradient is maximal when E[𝑧𝑖] = 0.5 (maximum un-
certainty) and vanishes as gates commit to 0 or 1, providing
stable optimization.

Remarks An activation function sparsifies as its gates
close, and the entire function can be omitted when all its
gates close, allowing for architectural sparsification. Beyond
the mechanism of sparsity, these gates offer additional bene-
fits. Initializing 𝛼𝑖 acts as a prior, and one can tune the model
towards or away from symbolic entries by, for instance, set-
ting 𝛼𝑖 ≈ −1 for dense terms and 𝛼𝑖 ≈ 0 otherwise. Gate
probabilities 𝑝𝑖 = E[𝑧𝑖] also provide a natural convergence
criterion: training can terminate early, possibly with some pa-
tience, once gates become decisive (e.g., when most 𝑝𝑖 < 0.01
or 𝑝𝑖 > 0.99).

3.3 Loss Function via Minimum Description
Length

To balance model accuracy while minimizing complexity, our
training objective is motivated by the Minimum Description
Length (MDL) principle, which seeks to minimize the total
bits required to encode both the model and the data given the
model:

LMDL = Lmodel + Ldata |model. (11)

The first term captures model complexity while the second
encodes residuals. Assuming iid residuals 𝜖𝑡 = 𝑦𝑡 − 𝑦̂𝑡 ∼
N(0, 𝜎2), the data encoding term, Ldata |model, is proportional
to the negative log-likelihood:

Ldata |model ∝
𝑛

2
log𝜎2 + 1

2𝜎2

𝑛∑︁
𝑡=1

(𝑦𝑡 − 𝑦̂𝑡 )2. (12)

Since
∑𝑛
𝑡=1 (𝑦𝑡 − 𝑦̂𝑡 )2 = 𝑛MSE(𝑦, 𝑦̂) and setting 𝜎2 =

MSE(𝑦, 𝑦̂) (empirical variance), minimizing the mean
squared error implicitly minimizes this encoding term. For

Lmodel, the model complexity term, let

𝑘 :=
∑︁
ℓ𝑖 𝑗

∑︁
𝑚

E[𝑧ℓ𝑖 𝑗𝑚] (13)

be the expected number of active terms over the activation
functions in the network, where E[𝑧] is given by Eq. (9).
Under a BIC-style approximation [8], the model description
length is Lmodel =

𝑘
2 log 𝑛. Putting both terms together yields

the per-sample training objective

L = MSE(𝑦, 𝑦̂) + 𝛽 𝑘 log 𝑛
2𝑛

, (14)

where hyperparameter 𝛽 ≥ 0 controls the sparsity-accuracy
tradeoff.

3.3.1 Complexity-weighted sparsity

Standard MDL treats all parameters uniformly. However,
when selecting among terms with varying structural com-
plexity, we may sometimes wish to account for differen-
tial encoding costs, which we can do by incorporating
complexity weights. For term 𝜓𝑚 with complexity weight
𝑤𝑚 > 0, the weighted number of active terms is 𝑘𝑤 :=∑
ℓ𝑖 𝑗

∑
𝑚 𝑤𝑚E[𝑧ℓ𝑖 𝑗𝑚] which replaces 𝑘 in Eq. (14). The gra-

dient 𝜕𝑘𝑤/𝜕𝛼𝑚 = 𝑤𝑚E[𝑧𝑚] (1 − E[𝑧𝑚]) shows that higher
complexity weights will induce stronger regularization pres-
sure on the corresponding gates. Appropriate choices for
𝑤𝑚 include uniform weighting (𝑤𝑚 = 1, recovering standard
BIC), encoding cost (𝑤𝑚 = 1+log2 (𝑑+1) for degree/order 𝑑,
reflecting bits to specify the function), or computational cost
(𝑤𝑚 ∝ FLOPs required to evaluate 𝜓𝑚). Hand-tuning 𝑤𝑚 is
also common practice in symbolic regression. In this work,
we do not pursue weighting schemes other than traditional
MDL, but it may be beneficial to consider them in the future.

We discuss further setup and training details in Methods
(Sec. A).

4 Results
We start by evaluating S2KAN on a toy example, predict-
ing the function 𝑦 = sinc(𝑥) = sin(𝑥)/𝑥. We generate
1024 training and 256 testing points and use a single-layer
one-multiplication-unit KAN trained with 2000 epochs and a
batch size of 32. For S2KAN we provide a symbolic library
containing the reciprocal function 1/𝑥, as well as 𝑃 = 6 and
𝑄 = 4 for the Chebyshev and Fourier bases, respectively.
Other training details are as per Methods (Sec. A).

Figure 1 shows the non-symbolic decomposition typical
for KANs. Baseline KAN, while fitting the data well (test
MSE < 10−5), lacks symbolic fidelity. In contrast, S2KAN,
equipped with the reciprocal function, perfectly discovers the
multiplicative decomposition of the sinc function.

4



Next, we turn to the Nguyen symbolic regression bench-
mark [31]. This benchmark contains a sample of mathe-
matical functions designed to capture a variety of symbolic
regression challenges. We focus in Table 1 on the first 10, the
last two of which are bivariate. For each problem we generate
1024 training and 256 testing points. We apply three differ-
ent architectures, a ‘small’ architecture with no hidden units,
a ‘large’ architecture with one hidden layer of 3 summation
units, and a ‘large-mult’ architecture with one hidden layer of
3 summation and 1 multiplication units. Models were trained
for 10k epochs with a batch size of 128. S2KAN’s first 200
epochs were warmup (𝛽 = 0). We report the best of 3 seeds.
For the baseline, we report the accuracy (test 𝑅2) for the orig-
inal model and after symbolification at threshold 0.5 and 0.95
(Sec. 2.2). For S2KAN we used three values of 𝛽 to study
different levels of regularization, and for each we report test
𝑅2 and the % of symbolic terms in the final model.

In almost all cases, the baseline model accurately repre-
sents the function (one exception is the small architecture for
problem F10, which lacks the expressive power to capture
the true function). The same or nearly the same predictive
performance is observed across the S2KAN architectures (the
one exception is the larger architectures at 𝛽 = 10 for F5).

However, the performance comparison changes consider-
ably when we consider the symbolified baseline models. Even
at the stricter threshold of 0.95, rarely does the baseline model
retain a good fit to the data; only for the small architectures
for problems F1–F5 does the baseline reliably recover a pre-
dictive symbolic form. In contrast, in nearly all cases the
S2KAN models are already symbolified, with small archi-
tectures achieving 100% symbolic terms in all cases except
F10.

Unlike the baseline model, there is essentially no tradeoff
between numeric accuracy and symbolicity in S2KAN.

4.1 Data-driven modeling of dynamical sys-
tems

We evaluate S2KAN on two dynamical systems that present
challenging forecasting problems due to their chaotic attrac-
tors.

The first is the Ikeda map [32, 33], a discrete-time chaotic
system arising from nonlinear optics that resists discovery by
sparse regression methods like SINDy [10]:

𝑥𝑛+1 = 1 + 𝜇 (𝑥𝑛 cos (𝜙𝑛) − 𝑦𝑛 sin (𝜙𝑛)) ,
𝑦𝑛+1 = 𝜇 (𝑥𝑛 sin(𝜙𝑛) + 𝑦𝑛 cos(𝜙𝑛)) ,

(15)

where 𝜙𝑛 = 0.4−6
(
1 + 𝑥2

𝑛 + 𝑦2
𝑛

)−1 and bifurcation parameter
𝜇 = 0.9. KANs have been shown to model the Ikeda map
effectively [17, 18].

The second system is a continuous-time three-species

ecosystem:

𝑑𝑁

𝑑𝑡
= 𝑁

(
1 − 𝑁

𝐾

)
− 𝑥𝑝𝑦𝑝

𝑁𝑃

𝑁 + 𝑁0
,

𝑑𝑃

𝑑𝑡
= 𝑥𝑝𝑃

(
𝑦𝑝

𝑁

𝑁 + 𝑁0
− 1

)
− 𝑥𝑞𝑦𝑞

𝑃𝑄

𝑃 + 𝑃0
,

𝑑𝑄

𝑑𝑡
= 𝑥𝑞𝑄

(
𝑦𝑞

𝑃

𝑃 + 𝑃0
− 1

)
,

(16)

where 𝑁 , 𝑃, and 𝑄 represent primary producer, herbivore,
and carnivore populations, with carrying capacity 𝐾 serving
as the bifurcation parameter. We set 𝐾 = 0.98, 𝑥𝑝 = 0.4,
𝑦𝑝 = 2.009, 𝑥𝑞 = 0.08, 𝑦𝑞 = 2.876, 𝑁0 = 0.16129, and
𝑃0 = 0.5 to produce chaotic dynamics [34].

Data for both systems were generated and split into training
and testing as per Panahi et al. [17]. To model these systems
we use a [2, 4,4,4, 2] architecture for the Ikeda map and a [3,
3,3, 3] architecture for the ecosystem. The same architectures
were used in prior work [18]. All models were trained with a
batch size of 128. We equipped S2KAN withS = {

√
𝑥, 1/(1+

𝑥2)} (Ikeda), 𝑆 = {1, 𝑥, 𝑥2, 1/(1 + 𝑥)} (ecosystem), and 𝑃 =

𝑄 = 4 (both). We report our results in Table 2 and Figs. 2
and 3.

On the Ikeda map, the baseline model showed a noticeable
performance advantage over S2KAN in 1-step prediction and
a slight disadvantage in multi-step prediction. However, we
also see that the baseline model is far larger, containing 48
activation functions and 720 total parameters, compared to 32
functions and 122 parameters—the baseline model is nearly
six times larger. With this capacity difference in mind, the
improvement in multi-step performance is notable given the
more parsimonious model. We see good multi-step forecast-
ing, with a similar accuracy horizon for both models (Fig. 2).

On the ecosystem, we find that 1-step prediction is quite
poor but multi-step prediction is reasonable, and the learned
S2KAN is very small compared to the baseline, only 5% of
the parameters. When we examine the trajectories (Fig. 3),
however, we notice a problem: the S2KAN model has been
crushed so heavily it collapses to a fixed point. This motivated
investigating smaller values of 𝛽, eventually reaching 𝛽 = 0.
This model performed very well, with a long accuracy horizon
and nearly half the multi-step error of the baseline model.
Surprisingly, this model, which has no specific regularization
pressure, still sparsified, and it outperformed the baseline
with 13% fewer parameters. Given the relative performance
at 1-step and multi-step prediction, it is likely that the baseline
is overfitting the derivative while S2KAN is better capturing
the underlying attractor.

Given this result on the ecosystem, we performed an unreg-
ularized experiment on the Ikeda map, setting 𝛽 = 0 (Table 2
and Fig. 2). In this case, the unregularized model performed
slightly worse than the regularized model, and did not reach
full gate convergence even with the longer training time, but
slightly outperformed the baseline.
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Figure 2: Dynamical system modeling for the Ikeda map. (a) 𝛽 = 0, 20k epochs. (b) 𝛽 = 0.1, 4k epochs. The regularized S2KAN accurately
forecasts the dynamics from the initial condition as long as the baseline (shaded region).

Figure 3: Dynamical system modeling for the ecosystem. (a) 𝛽 = 0, 15k epochs. (b) 𝛽 = 0.1, 10k epochs. The unregularized S2KAN
captures the multi-step dynamics well.
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Table 1: Nguyen benchmarks across architectures. Shapes: S = [𝑛0, 1], L = [𝑛0, 3, 1], LM = [𝑛0, (3, 1), 1].

Baseline KAN S2KAN

ID Expression 𝑅2 𝑅2 % Symbolic

— 𝑡=0.5 𝑡=0.95 𝛽=0.1 𝛽=1 𝛽=10 0.1 1 10

F1 𝑥3 + 𝑥2 + 𝑥 S 1.0000 -0.10 1.00 1.0000 1.0000 0.9981 100 100 100
𝑥 ∈ [−1, 1] L 1.0000 -0.12 0.16 1.0000 0.9997 0.9990 100 83 33

LM 1.0000 -0.16 -0.16 1.0000 0.9998 0.9982 78 33 11

F2 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 S 1.0000 -0.25 1.00 1.0000 0.9999 0.9913 100 100 100
𝑥 ∈ [−1, 1] L 1.0000 -0.08 0.66 1.0000 1.0000 0.9999 100 83 50

LM 1.0000 -0.28 0.62 1.0000 0.9999 0.9998 89 44 33

F3 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 S 1.0000 -0.16 1.00 1.0000 1.0000 0.9943 100 100 100
𝑥 ∈ [−1, 1] L 1.0000 -0.14 0.49 1.0000 1.0000 0.9991 100 67 50

LM 1.0000 0.07 0.60 1.0000 0.9999 0.9984 78 33 33

F4 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 S 1.0000 -0.23 1.00 1.0000 1.0000 0.9856 100 100 100
𝑥 ∈ [−1, 1] L 1.0000 -0.19 1.00 1.0000 1.0000 0.9998 100 83 50

LM 1.0000 -0.23 0.07 1.0000 1.0000 0.9986 100 67 33

F5 sin(𝑥2 ) cos(𝑥 ) − 1 S 1.0000 1.00 1.00 0.9998 0.9980 0.9721 100 100 100
𝑥 ∈ [−1, 1] L 1.0000 -0.56 -1.20 0.9999 0.9997 0.0037 33 0 0

LM 1.0000 -21.62 -6.51 0.9999 0.9997 0.0039 22 22 0

F6 sin(𝑥 ) + sin(𝑥 + 𝑥2 ) S 1.0000 -0.05 -0.05 0.9998 0.9994 0.9968 100 100 100
𝑥 ∈ [−1, 1] L 1.0000 -0.05 0.68 1.0000 0.9997 0.9732 67 33 17

LM 1.0000 -0.04 0.47 0.9999 0.9998 0.9918 44 44 11

F7 log(𝑥 + 1) + log(𝑥2 + 1) S 1.0000 -2.68 -2.68 1.0000 1.0000 0.9998 100 100 100
𝑥 ∈ [0, 2] L 1.0000 -1.27 -1.27 1.0000 0.9999 0.9997 100 50 0

LM 1.0000 -2.68 -2.38 1.0000 1.0000 0.9997 78 44 0

F8
√
𝑥 S 1.0000 -8.43 -8.43 0.9990 0.9987 0.9660 100 100 100
𝑥 ∈ [0, 4] L 1.0000 -7.81 -3.83 0.9998 0.9989 0.9534 83 50 67

LM 1.0000 -4.45 -2.00 0.9998 0.9953 0.9839 78 22 0

F9 sin(𝑥 ) + sin(𝑦2 ) S 1.0000 -0.33 -0.33 0.9999 0.9988 0.9989 100 100 100
𝑥, 𝑦 ∈ [−1, 1] L 1.0000 -0.37 -0.37 0.9999 0.9987 0.9966 100 67 22

LM 1.0000 -0.23 -0.19 0.9999 0.9992 0.9968 50 14 7

F10 2 sin(𝑥 ) cos(𝑦) S -0.0008 -0.00 -0.00 -0.0006 -0.0006 0.0039 50 0 0
𝑥, 𝑦 ∈ [−𝜋, 𝜋 ] L 1.0000 -0.09 -0.37 0.9998 0.9997 0.9968 100 100 56

LM 1.0000 -0.09 0.56 0.9999 0.9999 0.9988 86 21 21

Table 2: Comparison of Baseline and S2KAN models on dynamical systems prediction tasks.

RMSE

Epochs Shape Model 𝛽 1-step multi-
Active
funcs. 𝑘

Ikeda map 4 000 [2, 4, 4, 4, 2] Baseline – 0.0052 0.8711 48 720
S2KAN 0.1 0.0196 0.8385 32 122.4

20 000 Baseline – 0.0028 0.8674 48 720
S2KAN 0.0 0.1052 0.8067 43 829.5

Ecosystem 10 000 [3, 3, 3, 3] Baseline – 0.0003 0.2028 27 405
S2KAN 0.1 0.0667 0.1640 12 21

15 000 Baseline – 0.0002 0.1835 27 405
S2KAN 0.0 0.0007 0.1108 20 352.1

We explore model self-sparsification further in Sec. 5. 4.2 Real-world data
We apply S2KAN to two real-world datasets:

Concrete compressive strength Predict the compressive
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strength (in MPa) of concrete based on sample proper-
ties. Dataset contains 1030 samples with eight features:
cement, blast furnace slag, fly ash, water, superplasti-
cizer, coarse aggregate, fine aggregate (all in kg/m3),
and age (days). Compressive strength in concrete is
well known to depend on the water-to-cement ratio [35],
so we include this as a derived feature. We also com-
pute total binder (cement plus slag and fly ash), total
aggregate (coarse plus fine), and the water-to-binder ra-
tio, which generalizes the water-to-cement relationship
when supplementary cementitious materials are present.
We include log(age+ 1) and √age; strength gain in con-
crete follows an approximately logarithmic relationship
with curing time [35], motivating the inclusion of trans-
formed age variables. For modeling, we used an 80/20
train/test split. Data were collected by Yeh [36, 37].

Superconductor critical temperature Predict critical tem-
perature (in K) of superconductors based on their mate-
rial properties. The original dataset includes many fea-
tures and derived statistics; we focus on five that capture
composition, electronic structure, and bonding: number
of elements, weighted mean valence, valence entropy,
weighted mean first ionization energy, and mean elec-
tron affinity. These same representative features were
used in prior KAN modeling [18]. For modeling, we
sampled 1000 train and 1000 test points. The data come
from Japan’s National Institute for Materials Science su-
perconductor database [38, 39].

Our results are summarized in Table 3.
In both datasets S2KAN found considerably more compact

representations, and for concrete the fitted functions con-
tained no spline terms. The concrete models are significantly
more compressed than the baseline model, with a small trade-
off in accuracy: for 𝛽 = 0.1, S2KAN achieved test 𝑅2 = 0.91
vs. 0.92 for baseline, but with only 102 of 448 functions ac-
tive. The overall performance is quite good, approaching
known state of the art (𝑅2 = 0.93, [40]). For higher 𝛽 = 0.5,
far more compression was achieved (29/448 functions) with
predictive performance dropping to 𝑅2 = 0.86. Tuning 𝛽

allows experimenters to study the tradeoff in accuracy and
parsimony.

For superconductivity, S2KAN outperformed baseline
KAN (test 𝑅2 = 0.70–0.72 vs. 0.62), however it did so with
a heavier reliance on splines than for the concrete data. This
may underscore the challenge of expressing the physics gov-
erning superconducting behavior as simple symbolic func-
tions of bulk material properties. Interestingly, the more
regularized and smaller model, 𝛽 = 0.5, showed the best
predictive performance, suggesting that symbolic represen-
tations provide useful inductive bias even when they cannot
fully capture the underlying physics.

5 Learning dynamics and self-
sparsification

To understand how S2KAN discovers sparse representations
during training, we performed an experiment to track gate
statistics throughout optimization. For each gate with learn-
able parameter 𝛼𝑖 , the expected gate value 𝑝 := E[𝑧] (Eq. (9))
represents the probability the gate is open. We compute the
total binary entropy across all gates in the network:

𝐻 = −
∑︁
𝑚

[
𝑝𝑚 log2 𝑝𝑚 + (1 − 𝑝𝑚) log2 (1 − 𝑝𝑚)

]
, (17)

which measures the total uncertainty in the gate configuration.
When all gates are fully decided (𝑝𝑚 ≈ 0 or 𝑝𝑚 ≈ 1), entropy
is near zero; when gates are maximally uncertain (𝑝𝑚 ≈
0.5), entropy is maximized. We also report decisiveness, the
fraction of gates with 𝑝𝑚 < 0.01 or 𝑝𝑚 > 0.99, indicating
convergence to discrete selection.

Figure 4 shows these statistics for shallow and deep ar-
chitectures trained on the superconductor dataset. For
this experiment, we used a symbolic library S =

{1, 𝑥, 𝑥2, 𝑥3,
√
𝑥, log(𝑥 + 1), exp(𝑥)}, no Chebyshev terms

(𝑃 = 0), and Fourier modes 𝑄 = 2.
During warmup (𝛽 = 0), gates remain undecided; once reg-

ularization begins, entropy rises then drops as gates commit to
on/off states, with symbolic and spline gate probabilities sepa-
rating as the network selects its preferred representation. This
demonstrates that the differentiable sparsification process nat-
urally encompasses an exploration–exploitation tradeoff. No-
tice (Fig. 4, left top) the shallower network quickly opens up
the spline gates before closing them off once warmup ends
and regularization pressure begins. The deeper network, in
comparison, does not rely on the spline terms to the same
extent (Fig. 4, left bottom). In both networks, the spline gates
reach final state earlier than the gates for other terms. In the
deeper network, there is also a slight tendency for the later
layers to decide more quickly than the earlier layers (Fig. 4,
right), although the difference is fairly small. In the shallow
network, both layers decide at about the same rate.

We also explored the self-sparsification phenomenon ob-
served in Sec. 4.1 and Table 2. During those unregularized
training runs, we tracked the number of active terms. Ex-
amining in Fig. 5 their evolution over training, we again see
a clear exploration–exploitation tradeoff with 𝑘 rising be-
fore dropping, particularly for the ecosystem network (which
performed well under the 𝛽 = 0 condition). Even with no
regularization pressure, the model, when focused only on
minimizing error, will self-sparsify.
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Figure 4: Learning dynamics for S2KAN on the superconductor dataset, comparing shallow [5, 5, 1] (top) and deep [5, 5, 5, 1] (bottom)
architectures with 𝛽 = 0.5. Gray shading indicates the warmup period (𝛽 = 0).
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Table 3: Performance comparison of baseline KAN and S2KAN at different regularization strengths on real-world datasets.

Dataset 𝑁 obs. Features Model Shape 𝛽 𝑅2 RMSE Active 𝑘 % Symb.

Concrete 824/206 13 (8+5) Baseline [13, 32, 1] — 0.924 4.43 MPa 448 6720 0%
S2KAN [13, 32, 1] 0.1 0.909 4.84 MPa 102 134 100%
S2KAN [13, 32, 1] 0.5 0.864 5.93 MPa 29 33 100%

Supercond. 1000/1000 5 (of 81) Baseline [5, 5, 1] — 0.621 21.13 K 30 450 0%
S2KAN [5, 5, 1] 0.1 0.703 18.70 K 25 240 18.9%
S2KAN [5, 5, 1] 0.5 0.724 18.02 K 17 76 40.8%

6 Discussion
Our experiments demonstrate that S2KAN achieves compa-
rable or superior accuracy with substantially smaller, more
interpretable models. The method’s combination of differen-
tiable gating, MDL-based selection, and graceful degradation
enables symbolic discovery without sacrificing flexibility. We
now discuss limitations and directions for future work.

One potential criticism of S2KAN is that it offers no par-
ticular guidance on how to choose the activation function
dictionary. This limitation, however, is inherent to symbolic
regression itself: methods such as PySR [14], SINDy [10],
and AI Feynman [13] all require the user to specify candidate
functions. Domain knowledge typically guides this choice—
physical systems, for instance, suggest trigonometric func-
tions, rational functions, or exponentials depending on the
phenomena involved. Where S2KAN differs is in its graceful
degradation: if the dictionary lacks the necessary symbolic
terms to capture the underlying function, the method falls
back to dense representations rather than failing outright. A
suboptimal library thus incurs a cost in interpretability, not
accuracy.

The symbolic library presents its own practical challenges.
Terms such as 1/𝑥, log(𝑥), or exp(𝑥) can diverge for certain
inputs, destabilizing training. Likewise, log(𝑥) and

√
𝑥 have

restricted domains that may be violated during training. In
this light, the standard KAN’s exclusive reliance on dense rep-
resentations is an unsung strength: splines and similar bases
are smooth, bounded, and well-behaved across arbitrary input
domains, avoiding the pathologies that symbolic terms can in-
troduce. Yet these challenges are not unique to S2KAN: the
problem is endemic to symbolic regression methods includ-
ing neural network approaches like equation learner (EQL)
networks [41, 42, 43]. Practical mitigations include input
normalization, domain restriction, careful initialization, and
replacing problematic terms with protected variants such as√︁
|𝑥 | or log ( |𝑥 | + 𝜖). The EQL-div [42] and iEQL [43] vari-

ants offer a more principled solution, introducing symbolic
primitives with learnable cutoffs that prevent divergences and
provide smooth out-of-domain behavior; similar modifica-
tions could be incorporated into S2KAN. Beyond content,
dictionary size also matters: larger dictionaries increase train-
ing cost proportionally, though inference cost depends only

on selected terms—a heavily sparsified S2KAN may be faster
than baseline if it eliminates spline evaluations in favor of
simple symbolic primitives.

S2KAN takes an explicit approach to symbolic fidelity, in-
corporating symbolic primitives directly into the activation
function dictionary. However, the training instabilities dis-
cussed above—divergences, domain violations, the need for
protected operators—motivate an alternative: biasing dense
representations implicitly toward forms with high symbolic fi-
delity. Rather than embedding symbolic functions explicitly,
implicit approaches modify the training process or architec-
ture to encourage learned activations that, while remaining
dense, are more amenable to post-hoc symbolic fitting, effec-
tively a symbolic inductive bias. Projective KAN [44] exem-
plifies this direction, using projection-based regularization to
bias activations toward higher symbolic fidelity. Confining
ill-behaved terms to the regularization rather than the main
computational graph generally makes them easier to isolate
and control. Combining explicit symbolic terms with implicit
biases toward symbolic fidelity is a promising direction: such
hybrid approaches may capture the benefits of both, offering
guaranteed symbolic output when appropriate and greater
stability when symbolic terms are ill-suited.

We have presented S2KAN, a method that integrates sym-
bolic primitives directly into Kolmogorov–Arnold networks
through differentiable gating and principled, MDL-based se-
lection. By placing symbolic and dense representations on
equal footing, S2KAN discovers interpretable structure when
it is present while retaining the flexibility of standard KANs
when it is not. Our experiments demonstrate that this ap-
proach yields compact, symbolic models with competitive or
superior accuracy across symbolic benchmarks, chaotic dy-
namical systems, and real-world prediction tasks. As scien-
tific machine learning increasingly demands models that are
not only accurate but also interpretable, methods like S2KAN
offer a path toward neural networks whose internal structure
can be interrogated, understood, and trusted.

A Methods
S2KAN was implemented in PyTorch v2.8.0 [45]. Opti-
mization was performed using Adam [46] with default pa-
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rameters and a constant learning rate of 10−3 for both coeffi-
cients and gates. Non-spline coefficients were initialized from
𝑈 (−0.05, 0.05); spline coefficients were initialized as in [16].
For B-splines, we used 𝐺 = 10 grid intervals and degree
𝐾 = 3 for all experiments. Unless otherwise noted, spline
grids were updated 10 times during the first 50 epochs; grid
refinement was not used. Chebyshev polynomials are defined
on [−1, 1], so activation function domains are tracked per
activation and updated alongside spline grid updates; inputs
are rescaled to this domain before computing the Chebyshev
basis. Fourier terms use natural frequencies sin(𝑞𝑥), cos(𝑞𝑥)
without domain rescaling.

For the Hard Concrete distribution, we used temperature
𝜏 = 2/3 and stretch parameters 𝛾 = −0.1, 𝜁 = 1.1 through-
out. Unless otherwise noted, gates were initialized with
𝛼𝑖 ∼ N(0, 0.1) except for spline gates which used 𝛼𝑖 = −1,
providing a slight bias toward symbolic representations at ini-
tialization. Neither temperature annealing nor 𝛽 scheduling
was used.

Unless otherwise noted, models were trained with a batch
size of 128 and a warmup period of 200 epochs with 𝛽 = 0.
Early stopping terminated training when gate decisiveness
exceeded 0.99, with patience min(500, 0.05× # epochs). For
all experiments, baseline KAN used B-splines only with gates
fixed open and no regularization (𝛽 = 0).

Code will be made available upon publication.
Sinc function (Fig. 1)— We generated 1024 training and

256 test points on 𝑥 ∈ [1, 15], with target 𝑦 = sin(𝑥)/𝑥. Both
models used a single multiplication unit with no hidden layer,
shape [1, (0, 1)], trained for 2000 epochs with batch size 32.
S2KAN used symbolic library S = {1/𝑥}, Chebyshev degree
𝑃 = 6, Fourier modes𝑄 = 4, regularization 𝛽 = 1.0, and 100
warmup epochs. Early stopping was not used.

Nguyen benchmark (Table 1)— We evaluated the first 10
Nguyen problems [31], generating 1024 training and 256 test
points per problem. Models were trained for 10k epochs
and we report the best of 3 seeds. Three architectures
were tested: small (no hidden layer), large (one hidden
layer with 3 summation units), and large-mult (3 summation
plus 1 multiplication unit). S2KAN used symbolic library
S = {1, 𝑥, 𝑥2, sin(𝑥), cos(𝑥)}, 𝑃 = 11, and 𝑄 = 6. Post-hoc
symbolification of baseline KANs was applied at 𝑅2 thresh-
olds of 0.5 and 0.95.

Dynamical systems (Table 2, Figs. 2–3)— For the Ikeda
map, we used architecture [2, 4, 4, 4, 2] with symbolic library
S = {

√
𝑥, 1/(1 + 𝑥2)}, Chebyshev degree 𝑃 = 4, and Fourier

modes 𝑄 = 4. For the ecosystem, we used architecture
[3, 3, 3, 3] with symbolic library S = {1, 𝑥, 𝑥2, 1/(1 + 𝑥)}
and the same basis parameters. Spline grid updates and early
stopping were not used. Training epochs varied by condition
(see Table 2).

Real-world data (Table 3, Fig. 4)— For concrete com-
pressive strength, we used the UCI concrete dataset [36, 37]
with 8 raw features augmented by 5 derived features (water-

cement ratio, water-binder ratio, total binder, total aggregate,
log age), for 13 total. We used an 80/20 train-test split and
tested architectures [13, 32, 1] and [13, 32, 16, 1]. For super-
conductor critical temperature prediction, we used 5 features
from the UCI superconductor dataset [38, 39]: number of
elements, weighted mean valence, weighted mean first ion-
ization energy, mean electron affinity, and valence entropy.
We sampled 1000 training and 1000 test points and tested ar-
chitectures [5, 5, 1] and [5, 5, 5, 1] (these architectures were
previously used in [18]). Both tasks used symbolic library
S = {1, 𝑥, 𝑥2,

√
𝑥, log(𝑥 + 1)} (superconductor additionally

included 𝑥3 and exp(𝑥)), Fourier modes 𝑄 = 2, no Cheby-
shev basis, and were trained for 5000 epochs with batch size
64 and 500 warmup epochs. Early stopping was not used.
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