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Abstract

Evolutionary robotics methods optimize the physical and/or
neural aspects of robots against some desired task. Gener-
ally, these robots are only optimized for efficacy: how well
they perform the task. How they perform the task is usu-
ally ignored (with the exception of task-specific constraints).
However, this can lead to efficacious but complex and/or un-
predictable behaviors. To remedy this issue, we show here
for the first time that we can obtain robots of equal behavioral
task efficacy and better predictability than robots that are only
evolved for task efficacy, if robots are bi-objectively evolved
to (1) exhibit a desired behavior and (2) yield behavioral data
compressible by symbolic regression into increasingly pre-
dictive equations. Our results demonstrate that the potential
tradeoff between behavioral task efficacy and predictability
can be ameliorated through optimization against both desider-
ata. In scenarios where accuracy of prediction is critical, this
approach may provide an advantage over robots only opti-
mized for task efficacy. Further, the readability of symboli-
cally regressed equations may, in future, make evolved behav-
iors understandable as well. This could in turn render future
machines not just autonomous, useful, and predictable, but
also trustworthy.

Data/Code available at: |https://github.com/
mec-1lab/PRECOG

Introduction

Evolutionary robotics is the use of evolutionary algorithms
to optimize the morphology and/or neural control policy
of robots (Bongard, 2013; [Doncieux et al., [2015; |Nolfi
et al.| 2016)). These evolutionary algorithms take inspiration
from natural evolution, making random changes to the body
and/or brain of a population of individuals. Then, the best
performing population members on some specified task are
selected to survive in the population, giving rise to the next
generation. Through this, increasingly better performance in
the population is optimized over the generations. As making
such random updates to an entire population of robots can
be difficult or impossible in materia (Floreano et al.| |1994;
Floreano and Mondadal, |1998}; [Zykov et al., 2004), simula-
tion is often employed to allow for more efficient evolution.
Through use of physics simulators, an in silico robot can be

evaluated on a virtual task that can mimic the important as-
pects of the real environments that a physical version of the
robot may one day be in. Modifying both the morphology
and the controller of an in silico robot is much simpler and
more efficient than performing modifications on their in ma-
teria counterparts (Doncieux et al.,[2009; Glette et al.,|2012;
Gongora et al.,[2009)).

However, evolved robots can exhibit unpredictable be-
haviors when exposed to unexpected scenarios (Schoppers),
1987; |[Wang et al., [2012)). These behaviors can be harmful
to an in materia robot with the evolved in silico morphology
and/or controller. Unknown factors combined with the un-
predictable movement can be harmful to in materia robots
or their environments. For example, in 2022 a chess-playing
robot broke a child’s finger. The robot required time to re-
spond to the moves of the human player, and the child made
an unexpectedly quick motion. This led to the robot grab-
bing the child’s finger and breaking it. As the ultimate goal
of evolutionary robotics is to produce in materia robots that
will interact with humans and the world around us, unpre-
dictable behaviors can also be harmful to humans’ opinions
of and interaction with robots (Liberman-Pincu and Oron-
Gilad, 2024; Mubin and Bartneck! 2015} [Schadenberg et al.,
2021). Thus, it is important for a robot to be predictable in
its behaviors. Due to this, more emphasis has recently been
placed on the explainability of robots (Cruz et al., 2023}
Sado et al., [2023; Zhou et al., [2024). These studies, how-
ever, tend to focus on explaining why the robots behave the
way they do through explainable artificial intelligence. Such
methods focus on the ability to explain the robot’s behav-
iors in human-understandable ways through providing tech-
nical information and/or more general explanations for non-
expert users. This is distinct from our focus, which is the
predictability of the behaviors themselves.

Part of this lack of predictability is due to how the robots
are typically evolved. During evolution, robots that survive
in the population are chosen by some fitness metric related
to a task they perform. The robots are then evaluated on
how well they have performed this task during simulation.
However, the task that the robots are evolved to perform is
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Figure 1: Predictable Robot Evolves via Control Optimization and GP (PRECOG). (a) Pareto optimization of a population of
quadrupedal robots (teal) for task efficacy (x axis) and predictability (y axis). From generation O (red) to generation n (blue)
there is an improvement in both fitnesses. The Pareto front shows robots that are (b) highly predictable but not very efficacious,
(c) both predictable and efficacious, (d) are not very predictable but highly efficacious. The task efficacy of robots are shown in
the distance traveled in the x direction. Predictability is shown in the comparison between simulated (green solid) and predicted
(purple dashed) trajectories, with higher predictability being less difference between the two trajectories.

rarely associated with the entirety of their movement behav-
ior. (Nelson et al., 2009) Although some tasks are related to
movement, it is generally movement in a particular direction
or a certain type of movement (e.g. jumping, skipping, etc.).
Therefore, these tasks do not take into account all of the de-
tails of the behavior of the robot as it goes about its task. The
robot can be optimized instead for predictability of behavior
instead of task efficacy, however this may lead to a robot that
is very poor at performing its designated task. One of the
simplest things to predict is a completely stationary robot,
and therefore optimizing purely for predictability could eas-
ily lead to such solutions. There has been work in minimiz-
ing surprise in robot swarms, defined as the ability of a pre-
dictive network to predict the next action that the controller
network will take for individuals in a swarm (Hamann, [2014;
Kaiser and Hamann, 2019, [2022bla). However, although
some of these works discussed the effect of evolving for
predictability on particular task performance, in these papers
the swarm fitness was purely the predictive performance and
did not involve a task fitness in the evolution. [Kaiser and
Hamann| (2020) compare evolution for purely predictabil-
ity to evolution for purely task efficacy and novelty, but do
not jointly evolve for any combination therein. Kaiser et al.
(2023) do include sensor input in their reward function, but
they are testing for the emergence of dynamic behaviors not
task efficacy as it relates to the relevant sensor values. To the
best of our knowledge, no one to date has evolved for both
task efficacy and predictability.

Thus, the solution seems to be to not just automati-
cally generate behaviors through evolution, but also to make
these behaviors predictable. However, the definition of pre-
dictability can vary. With unlimited compute, a perfect 1-to-
1 simulation of the in materia environment could be near-
perfectly recreated, and a in silico twin of the robot sim-
ulated to study its behaviors. This “perfect” predictability

would require details such as the explicit simulation of sub-
atomic particles which would be so computationally expen-
sive that it is functionally impossible. Additionally, there
will always be unexpected factors that are not simulated,
such as the child’s quick movement discussed above. There-
fore, we here define predictability as how accurately an in
silico robot’s motion can be described using an equation.
An equation can implicitly represent the details of a robot’s
motion in an interpretable way. The evaluation of an equa-
tion will give a predicted trajectory, and this can be com-
pared to a simulated trajectory in some time domain to then
quantify how predictable the trajectory was. We chose equa-
tions for their interpretability, as other models such as neu-
ral networks tend to be black-box solutions where it can
be near impossible to understand why a certain prediction
is made. There have been works on self-modeling in neu-
ral networks for predictive ability (Premakumar et al.,[2024;
Watson et al.l 2011). However, this does not overcome the
aforementioned issue in black-box models. Equations, on
the other hand, are generally simpler and more understand-
able at a glance, using well known mathematical operations
to show relationships in the data.

To allow the use of equations to describe the trajectories
of the in silico robots, we propose using symbolic regres-
sion. Symbolic regression is an algorithm to automatically
distill equations from data without presupposing the form of
the equation (Kozal [1992)). As it is able to build an equation
from scratch using a set of mathematical operators, it has
an advantage over techniques like linear regression. Linear
regression can fit data to a predetermined skeleton equation
using constants, but will always be restricted by the opera-
tors that were chosen for the skeleton. Symbolic regression,
on the other hand, has full freedom to build its own skele-
ton equation and can therefore more accurately represent the
relationships in the data it fits.
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There are three main types of symbolic regression used
in literature: genetic programming symbolic regression
(GPSR), neural symbolic regression (NSR) and generalized
neural symbolic regression (GNSR). GPSR is the most tra-
ditional form of symbolic regression, evolving a population
of equations to fit a particular dataset (Arnaldo et al.| 2014}
Koza, 1992 [1994} |Schmidt and Lipsonl 2008, 2009; |Vir-
golin et al., 2021). Neural symbolic regression uses neural
networks to discover equations, generally with the structure
of the network and activation functions of the neurons be-
ing used to represent an equation (Costa et al., 2020} Mar-
tius and Lampert, 2016} |Petersen et al.l [2019; [Sahoo et al.|
2018). GNSR uses large-scale pretraining to train a trans-
former network on a corpus of data-equation pairs in or-
der to obtain a transformer that can take as input a dataset
and output a fitted equation (Bendinelli et al.| 2023} Biggio
et al.| 2021} Kamienny et al.,[2022; [Li et al.| |2022; [Valipour
et al.} 2021} Vastl et al., 2022). Both GPSR and NSR are
methods optimized per dataset, with NSR generally being
more efficient than some GPSR methods, as evolutionary
computation is generally less efficient than training through
backpropagation. However, highly optimized GPSR meth-
ods exist that are competitive with NSR methods in terms
of efficiency (La Cava et al.} 2021). GNSR has the advan-
tage of being generalized to produce any equation for any
given dataset, not needing to be retrained per dataset. How-
ever, GNSR networks tend to show trouble with equation
accuracy (Bertschinger et al.| 2023) whereas many GPSR
and NSR methods have been shown to be highly accu-
rate (La Cava et al., 2021)). Here, we use GPSR as our cho-
sen symbolic regression method as we are concerned pri-
marily with having high equation accuracy and prefer to use
an evolutionary method to echo what we are employing for
our methodology.

Symbolic regression has often historically been used to
predict scientific equations to a high degree of accuracy (An-
gelis et al., |2023; Kim et all [2020; |Quade et al.| 2016;
Schmidt and Lipson, [2009; [Wang et al.| [2019). In fact, us-
ing symbolic regression to describe robot behaviors has been
done in evolutionary robots. acero2024 use symbolic regres-
sion to describe the behaviors of robots with various gaits.
Specifically, they fit equations to the robot behaviors after
the robot controllers have already been evolved. In doing
so, they seek to increase the interpretability of their robots’
behaviors after optimization has occurred. However, for the
symbolic regression model, the accuracy of their equations
is consistently lower than the other models they employ for
prediction of robot behavior.

The solution to this lack of predictive accuracy can be ac-
complished by optimizing robots for both task efficacy and
predictability rather than evolving for task efficacy alone
and fitting equations for predictability after optimization.
Although it may first seem like adding an additional pre-
dictability objective to the optimization will harm the pri-

mary task efficacy objective, this is not necessarily the
case. In fact, there cases where adding an objective to op-
timization will ultimately help improve the primary objec-
tive (Grasso and Bongard, 2022}, 2023)). In this work, how-
ever, we aim only for maintaining the task efficacy of the
robots while increasing their predictability, as we concern
ourselves more with the explainability and interpretability
of the robot behaviors instead of their task efficacy. In
literature, robots have been evolved multi-objectively for
both primary task efficacy and another behavior like reactiv-
ity (Lehman et al.,|2013), but to date none have been evolved
for task efficacy and predictability.

Here, we show for the first time that a robot can be suc-
cessfully evolved for both task efficacy and predictability
of movement, such that a set of equations fit to the simu-
lated robot movement trajectory during evolution can have
higher prediction accuracy than equations fit to simulated
robot movement trajectory after evolution. Additionally, we
show that there is no significant loss in primary task effi-
cacy with bi-objective evolution for both task efficacy and
predictability as compared to a robot evolved for only task
efficacy.

Methods

Here, we explain the methodology we use for our experi-
ments. We describe in order the details of: our robots, the
movement behaviors we evolve for, the equations used to
describe said behaviors, our evolutionary optimization strat-
egy, and finally the predictions of the movement behaviors.
As a control method, we use use age-fitness Pareto optimiza-
tion (AFPO) (Schmidt and Lipson, |2010) for primary task
efficacy only. We select AFPO as an appropriate compari-
son as it is a single-objective optimization method that uses
Pareto front optimization, allowing for similar methodology
between PRECOG and AFPO for optimization, detailed be-
low.

Robots

Morphology and Controller For all of our experiments,
we used the same robot morphology and controller archi-
tecture, chosen for the simplicity of form that can lead to
complex behaviors. The robot morphology we use is a sim-
ple quadrupedal robot with a cube body. Each of the four
legs is attached to a different side of the robot (with none
on the top or the bottom of the robot). Each leg has two
hinge joints capable of moving: one to attach it to the robot
body and one “knee” joint. Each joint has a motor which
allows that joint to move as instructed by the controller at
each timestep. The maximum force the motors can apply is
30 Newton-metres, while the amplitude and frequency used
toldetermine the angle the motor should move to is 5 and

Tooo respectively. The bottom of each leg has a sensor on it

which senses contact with the ground. The robot also has a
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positional sensor which detects the x position of the robot at
each timestep.

All robot controllers consist of a simple neural network,
with each sensor being assigned an input neuron and each
motor being assigned an output neuron. All neurons in
the network are connected with synapses to all other neu-
rons. The synaptic weights are randomly internalized be-
tween [—1, 1]. Synapse weights are mutated over evolution,
details of which are provided below.

Physics Simulator For simulating the robots in our exper-
iments, we use PyBullet (Coumans and Bail |2021)), a Python
library for the Bullet physics engine. We specifically use the
Pyrosim package for Pybullet for ease of use, as Pyrosim
simplifies several important Pybullet functions for simple
robots like the quadrupedal robots that we use here. For
our training simulations during evolution, we simulate the
robots for 10,000 timesteps, with each timestep being 2%‘E()th
of a second. We use the standard gravity of -9.81, and all
other PyBullet hyperparameters are the Pyrosim defaults.

Robot Behaviors

Task Efficacy Fitness The task we evolve our robots for
is a basic one: how far in the positive x direction the robot
can move during the training time domain. Thus, the task
efficacy fitness is the x position of the robot during the fi-
nal training timestep. We choose this task for its simplicity,
showing that even for simple tasks and robots there are im-
provements to be made in predictability of behaviors.

Predictability Fitness The predictability of robot motion
is described using the R? value between the simulated tra-
jectories and trajectories predicted by equations fit by sym-
bolic regression (algorithm described below), given by

RX(P,P)=1— Sio(pe — Pe)? )
S (Pt — D)

where P and P are the true and predicted trajectory (X,Y)
values respectively, p is the mean of P values, and T is the
number of timesteps.

Equations

To obtain equations that describe robot trajectories, we
use the genetic programming symbolic regression algorithm
PySR (Cranmer; 2023). For PySR, we use a mathematical
operator set of [t,+, —, *, /, pow, sin, cos, tan, exp, log], a
maximum equation size of 20 terms, a maximum equation
tree depth of 7, 15 iterations of evolutionary fitting per equa-
tion, and a timeout of 90 seconds to best fit an equation. The
timeout is in place to ensure computational efficiency. After
90 seconds or 15 iterations, the best performing equations
by PySR’s default fitness score will be considered the fitted
equations. For each robot (X,Y") trajectory, two infix or-
dered equations are saved. In PRECOG, the equations are

fit during evolution to each population member’s entire sim-
ulated trajectory. In AFPO, the entire simulated trajectories
saved and the equations are fit after evolution ends for the
best performing population member (obtained by finding the
knee of the Pareto front) for each independent run.

Optimization

Here, we discuss details of our evolutionary algorithm, in-
cluding the evaluation of population members, selection of
population members during evolution, and details of how
population members are mutated to produce offspring.

For our evolutionary algorithm, we use bi-objective pareto
optimization, with the designated task efficacy and the pre-
dictability of the robots’ motion being the two objectives we
optimize for in PRECOG. For AFPO, following the stan-
dard, robot task efficacy and age are the two objectives opti-
mized for. We use a population size of 50 (25 parents and 25
children) and evolve for 50 generations for both PRECOG
and AFPO.

Selection During evolution, at each generation we use a
bi-objective selection strategy, with our two fitnesses being
task efficacy fitness and predictability fitness in PRECOG
and task efficacy fitness and age in AFPO respectively. We
use survivor selection, where two population members are
randomly chosen to compete. They are compared for task
efficacy fitness and predictability/age, and if either of the
robots are dominated, that robot is then removed from the
population. In PRECOG, domination is when both task ef-
ficacy fitness and predictability fitness are higher. In AFPO,
domination is when task efficacy fitness is higher and age
is lower. In the case that the two robots have the same task
and predictability fitness, the younger robot is chosen to sur-
vive. This continues until the population size matches the
assigned number of parents.

After evolution, the best-performing population members
at the final generation are selected by Pareto domination.
The kneedle algorithm (Satopaa et al., [2011) is then used
to select a robot from the Pareto front for each independent
trial for both PRECOG and AFPO. These robots are com-
bined into their respective best-performing population for
evaluation.

Mutation We only mutate the controllers of the robots in
this experiment, leaving the morphology consistent across
all robots. Specifically, the synapse weights of the neural
network controllers are what is mutated during evolution. At
each generation, for each parent, a random synapse is cho-
sen to be mutated, randomly assigning a new value for the
synaptic weight between [—1,1], to produce the children.
All children are then simulated and evaluated on their per-
formance, and the new parents are chosen using the selection
strategy described above.
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Figure 2: PRECOG Pareto fronts every 10 generations for a
chosen sample trial out of the 30 independent trials. X axis
is the task efficacy fitness and Y axis is the predictability
fitness (R?).

Prediction

In order to obtain and evaluate the predictions of robot be-
havior for obtaining the R? fitness, we evaluate the equa-
tions obtained through symbolic regression. The two equa-
tions x(t) and y(t) are evaluated for each timestep ¢ =
[0, ...,9999] to obtain the predicted behavior of the robot.
In PRECOG, this evaluation happens during evolution in or-
der to obtain the R? fitness of the prediction in comparison
to the simulated trajectory. For the AFPO control, this equa-
tion evaluation happens after evolution.

Results

In this section, we present the results of our optimization,
robot behaviors, and the predictions made from the equa-
tions fitted to the robot behaviors. All data presented here
is from 30 independent trials of PRECOG and 30 indepen-
dent trials of AFPO, following the above methodology. All
single-trial results presented are from one randomly selected
trial out of the 30 PRECOG trials.

Evolutionary Results

Here, we discuss the results of our evolutionary optimization
through a sample Pareto front of one of the 30 independent
trials and the fitness over time of the task efficacy of both
PRECOG and the AFPO control.

Pareto Fronts Figure 2] shows the Pareto fronts over evo-
lutionary time for a sample trial from the 30 independent
trials. The Pareto fronts every 10 generations show the in-
creasing fitness for both task efficacy and predictability over
generations.

Fitness Over Time Figure [3] shows the average task effi-
cacy fitness over time of both our 30 independent PRECOG

] — arPO
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Task Efficacy Fitness
- = — =
= o S o) = >
L L ! ! f
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L

0 10 20 30 40 50
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Figure 3: Average task efficacy fitness over generations for
AFPO (blue) and PRECOG (orange). Shaded areas are the
95% confidence intervals for each method.

EEE AFPO
W PRECOG

10! 4

Fitness Value

100 4

Task Efficacy Predictability

Fitness Type

Figure 4: Left: Mean task efficacy fitness of the best-
performing population of AFPO (blue) and PRECOG (or-
ange) respectively. Right: Mean predictability fitness of the
best-performing population of AFPO (blue) and PRECOG
(orange) respectively. Error bars show one standard devia-
tion for each respective population.

trials as well as the 30 independent AFPO trials. The av-
erage of PRECOG task efficacy closely follows the average
of AFPO task efficacy, with the average PRECOG task effi-
cacy lying within the 95% confidence interval of the average
AFPO task efficacy.

Task Efficacy and Predictability

Figure fleft) shows the mean task efficacy fitness of both
the AFPO control and PRECOG best-performing popu-
lations. The mean task efficacy of AFPO is 17.21 and
the mean task efficacy of PRECOG is 14.55. In spite
of the higher mean task efficacy of AFPO, the PRECOG
and AFPO best-performing populations task efficacy fitness
have a p > 0.05 as calculated by the Mann-Whitney U
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Figure 5: For the meta-Pareto front of best performing pop-
ulation members over 30 independent trials: (a) simulated
(solid) and predicted (dashed) X (green) and Y (blue) tra-
jectories (top) and corresponding equations (bottom) for the
best performing robot by task efficacy. (b) Simulated and
predicted X and Y trajectories (top) and corresponding equa-
tions (bottom) for the best performing robot by predictabil-

1ty.

test (Mann and Whitney, [1947), showing no statistically sig-
nificant difference between our PRECOG method and the
AFPO control for task efficacy.

Figure [|right) shows the mean predictability fitness
of the best-performing population for both PRECOG and
AFPO. The PRECOG and AFPO best-performing popula-
tions have a mean R? value of 0.972 and 0.797 respec-
tively. There is a p-value of 0.02 as calculated by the Mann-
Whitney U test that the PRECOG population’s predictability
is greater than the AFPO population’s.

Equations and Predictions

Figure [5] shows the simulated and predicted trajectories of
the two robots in the meta-Pareto front, as well as the corre-
sponding equations from which the predicted trajectories are
gotten. The two members of the meta-Pareto show the two
cases of higher task efficacy and lower predictability as well
as lower task efficacy and higher predictability. In this meta-
Pareto, there is no knee robot that shows both high task effi-
cacy and predictability. Both robots in the meta-Pareto have

a high prediction accuracy of R? > 0.99. The robot with a
higher task efficacy has an task efficacy fitness of 38.69 and a
predictability fitness of 0.996. The robot with the lower task
efficacy has a lower task efficacy fitness of only 3.39 and
a slightly higher predictability fitness of 0.998. The robots
in both Figure [5(a) and (b) have a predicted trajectory that
closely matches the simulated trajectory, matching the high
R? > 0.99 that both have as a predictability fitness.

Figure [6[(a)(b)(c) show the simulated and predicted tra-
jectories for the highest task efficacy fitness, kneedle al-
gorithm selected Pareto-knee, and highest predictability fit-
ness robots from the sample trial respectively. The robot in
Figure [6(a) has an task efficacy fitness of 24.13 and a pre-
dictability fitness of 0.789. This is reflected in how the pre-
dicted trajectory does not closely match the simulated tra-
jectory throughout the Y trajectory especially. The robot in
Figure [6(b) has an task efficacy fitness of 9.88 and a pre-
dictability fitness of 0.996. The robot in Figure [6] has a
task efficacy fitness of 16.15 and a predictability fitness of
0.989. In both cases, the higher predictability fitness R? are
reflected in the predicted trajectories closely matching the
simulated trajectories.

Discussion

Figure 2] shows that robots can be bi-objectively evolved for
both task efficacy and predictability. Over increasing gener-
ations, both the task efficacy and predictability of each gen-
erations’ Pareto fronts increase. However, the predictability
fitness does increase faster, with high predictability fitness of
R? > 0.99 by achieved by generation 19. Generations 29,
39, and 49 still show that more of the Pareto front is con-
sistently achieving higher predictability fitnesses over gen-
erations. The larger increase in task efficacy fitness over the
successive generations can be explained by the fact that task
efficacy fitness has no upper limit whereas the maximum R?
score is 1.0.

Figure [4| shows that this bi-objective evolution does not
come at the cost of decreased task efficacy fitness. Com-
pared to the AFPO control that is evolved for only task ef-
ficacy and not predictability, the PRECOG best-performing
population is not statistically significantly lower, backed up
by a p > 0.5. This shows that although the mean AFPO task
efficacy is higher than the mean PRECOG task efficacy, the
bi-objective evolution does not significantly lower the task
efficacy. Further, PRECOG achieves a significantly better
mean predictability fitness than AFPO. Together, these fig-
ures support - for the tasks studied here - the main claim
that robots can be evolved for higher predictability without
sacrificing task efficacy.

PRECOG does require additional computational re-
sources as compared to AFPO, given the necessity of fit-
ting equations with a GPSR method. However, Figure
(obtained from 30 robots from independent trials) shows
that the additional compute is small when compared to the
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the final pareto front. (b) Simulated and predicted X and Y trajectories (top) and corresponding equations (bottom) for the
robot drawn from the knee of the same pareto front. (c) Simulated and predicted X and Y trajectories (top) and corresponding
equations (bottom) for the most predictable robot drawn from the same pareto front.
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Figure 7: Mean wall-time of PyBullet simulation (green)
and PySR equation fitting (purple).

amount of compute required by the simulation. The com-
pute required by simulation is an average of 1280.29 sec-
onds per simulation, whereas PySR equation fitting is only
109.30 seconds per set of two equations. This means that the
additional compute required by the GPSR equation fitting is
on average only 8.5% of the compute required by the simu-
lation. Due to the closeness of the AFPO and PRECOG task
efficacy over time seen in Figure [3] an additional approxi-
mately 10% compute given to AFPO in the form of extra
generations for evolution would likely not be significant in
improving task efficacy over what PRECOG achieves.
Overall, for the meta-Pareto front detailed in Figure EL
both the low-task efficacy and high-task efficacy robots have
a high predictability, confirmed by their R? scores as well
as a visual inspection of the simulated vs predicted trajec-
tories in Figure 5] Both robots’ predicted trajectories are
able to match the overall behavior of the robot well. The
similar predictability of the high task efficacy robot further

shows that there does not have to be dramatic decrease in
predictability for high task efficacy when the robot is explic-
itly optimized for both.

The three robots shown in Figure [f] show the poten-
tial tradeoff between task efficacy and predictability in bi-
objective optimization. The high task efficacy robot (Fig.
[l(@)) is able to go much further in the positive x direction
than either the knee (Fig. [6{b)) or high-predictability (Fig.
[6lc)) robot. This robot confirms intuition that a robot with
the highest task efficacy can be harder to predict through
equations, with the simulated and predicted trajectories not
matching very closely for the Y trajectory. Although the
predicted X trajectory is closer to its simulated counterpart
than the Y trajectory, clearly neither the fitted x(t) or y(t)
have captured the full intricacies of the robot’s behavior. In
comparison, the high predictability robot in Fig. [f[c) some-
what defies intuition on what a high-predictability but low-
task efficacy robot’s behavior would be. Intuitively, the sim-
plest way for a robot to achieve a very high predictability
fitness would be for it to learn not to move, which gives
rise to the very simple trajectory equations of z(¢) = 0 and
y(t) = 0. However, Fig. @c) trajectories and equations
show that the robot did move in both the x and y directions.
This can likely be explained by the difficulty in creating a
robot that does not move at all in our methodology, due to
only one synaptic weight being randomly modified for each
child. It is possible that gradient descent methods, which are
able to continuously adjust network weights in small incre-
ments would more easily find the solution of a completely
static robot. Importantly, the knee robot (Fig. [6(b)) con-
firms that a good task efficacy can be achieved with a high
predictability, where the equations capture the overall be-
havior of the robot well although some of the fine intricacies
of the motion are not represented.

Further analysis of the equations fit to evolved behaviors
in the chosen sample trial reveals interesting details of what
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the GPSR algorithm focuses on when fitting the equations.
Figure [8| shows that the GPSR algorithm uses more basic
operators such as [+, *, pow] over trigonometric operators.
The GPSR algorithm is not fitting oscillatory behavior, even
when it is present (such as in Fig. |§kb)). The oscillations
in the trajectories for this robot are small in amplitude, but
visibly present. However, as evidenced by the lack of any
sine or cosine operators in the relevant equations, the GPSR
algorithm does not include the small oscillatory behavior, as
it is not as dominant as the curving trajectory captured by
the t'/3 term. Given the overall low frequency of trigono-
metric operators in the analyzed Pareto equations, it can be
assumed that this tendency to ignore small oscillatory behav-
ior is systematic in the fitted equations and their predicted
trajectories. This implies that it is the larger movement be-
haviors that are more important to overall predictability of

the robots than the smaller, more detailed behaviors.

Figure 9 shows the mean equation lengths of the Pareto
front robots’ fitted equations every 10 generations for the
selected sample trial run. Here, equation length is the length
of the preorder traversal of an equation tree, and is being
used as a measure of equation complexity. As can be seen,
there is a slight trend toward an increase in complexity un-
til generation 39, after which the complexity drops again.
This indicates a possible trend toward predicting more com-
plex equations as trajectories get longer and more complex.
However, the effect is small and somewhat inconsistent and
as such causation between increased efficacy/predictability
and higher equation complexity cannot be proven.

These equations that describe the robots’ behaviors are
a powerful tool beyond simply what behaviors the GPSR
algorithm finds important. Generally, robot behaviors are
controlled by neural networks, broadly considered to be
black-box models. Equations, on the other hand, have a
very high degree of interpretability. A robot’s neural net-
work controller generally must be simulated and this simula-
tion viewed to understand the behaviors it controls, whereas
those behaviors can be easily understood from inspecting
the robot’s equations, and potentially plotting the trajectories
that result from evaluating said equations. As interpretabil-
ity of methods is an increasingly large concern dealt with in
not just evolutionary robots but all Al fields, having highly
interpretable equations to describe robot behaviors can po-
tentially be highly beneficial. However, the use of equations
as a measure of predictability is a mathematical and not nec-
essarily intuitively predictable by the average person. In
theory, a simpler equation should lead to more intuitively
understandable and predictable behavior. As such, in future
work, we would like to explore evolving for equations that
are not just accurate but also simple.

Overall, we have here shown that bi-objectively optimiz-
ing for both task efficacy and behavioral predictability can
be used to obtain robots that are equal in behavioral task ef-
ficacy to robots optimized for only task efficacy while also
having higher predictability. This is important for evolution-
ary robots, as the predictability of robot behaviors is a key
safety issue, and these results represent a step toward more
predictable robots.

In future, we would like to further extend the multi-
objective optimization explored here. In both biology and
evolutionary robots, there is an accepted tradeoff in legged
motion between task efficacy of motion and energetic effi-
ciency (Sellers et al.}[2003)). Further, legged motion requires
more complex motions than peristaltic motion or wheeled
travel, suggesting legged locomotion may be more unpre-
dictable than non-legged motion. As such, we believe em-
ploying tri-objective evolution between task efficacy, pre-
dictability, and energetic efficiency could result in robots
that enjoy high task efficacy while also being predictable and
efficient.
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